
lable at ScienceDirect

Environmental Modelling & Software 25 (2010) 1031–1044
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
A sensor network for high frequency estimation of water quality constituent
fluxes using surrogates

Jeffery S. Horsburgh a,*, Amber Spackman Jones a, David K. Stevens a,
David G. Tarboton a, Nancy O. Mesner b

a Utah Water Research Laboratory, Utah State University, 8200 Old Main Hill, Logan, UT 84322-8200, USA
b Department of Watershed Sciences, Utah State University, Logan, UT, USA
a r t i c l e i n f o

Article history:
Received 1 April 2009
Received in revised form
4 October 2009
Accepted 28 October 2009
Available online 14 December 2009

Keywords:
Sensor network
Water quality
Surrogate
Flux
High frequency monitoring
Environmental observatory
* Corresponding author. Tel.: þ1 435 797 2946; fax
E-mail address: jeff.horsburgh@usu.edu (J.S. Horsb

1364-8152/$ – see front matter � 2009 Elsevier Ltd.
doi:10.1016/j.envsoft.2009.10.012
a b s t r a c t

Characterizing spatial and temporal variability in the fluxes and stores of water and water borne
constituents is important in understanding the mechanisms and flow paths that carry constituents to
a stream and through a watershed. High frequency data collected at multiple sites can be used to more
effectively quantify spatial and temporal variability in water quality constituent fluxes than through the
use of low frequency water quality grab sampling. However, for many constituents (e.g., sediment and
phosphorus) in-situ sensor technology does not currently exist for making high frequency measurements
of constituent concentrations. In this paper we describe how water quality measures such as turbidity or
specific conductance, which can be measured in-situ with high frequency, can be used as surrogates for
other water quality constituents that cannot economically be measured with high frequency to provide
continuous time series of water quality constituent concentrations and fluxes. We describe the observing
infrastructure required to make high frequency estimates of water quality constituent fluxes based on
surrogate data at multiple sites within a sensor network supporting an environmental observatory. This
includes the supporting sensor, communication, data management, and data storage and processing
infrastructure. We then provide a case study implementation in the Little Bear River watershed of
northern Utah, USA, where a wireless sensor network has been developed for estimating total phos-
phorus and total suspended solids fluxes using turbidity as a surrogate.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Characterizing spatial and temporal variability in the fluxes and
stores of water and water borne constituents is important in
understanding the mechanisms and flow paths that carry constitu-
ents to a stream and through a watershed (Montgomery et al., 2007;
Wilkinson et al., 2009). Our ability to predict watershed response,
which is becoming increasingly important as we work to manage
growing pressures on limited water resources, is dependent upon
our knowledge of watershed behavior and the interacting processes
that drive that response. In some watersheds, the time scale of many
important hydrologic and water quality processes is on the order of
minutes to hours, not weeks to months (Tomlinson and De Carlo,
2003), and understanding the process linkages between catchment
hydrology and stream water chemistry, which is necessary for
incorporating these processes into predictive models, requires
: þ1 435 797 3663.
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measurements on a time scale that is consistent with these processes
(Kirchner et al., 2004).

Indeed, the need for high frequency monitoring is well recog-
nized (Kirchner et al., 2004; Kirchner, 2006; Hart and Martinez,
2006) and has motivated community initiatives (e.g., http://www.
cuahsi.org, http://cleaner.ncsa.uiuc.edu, http://www.watersnet.org/)
towards the establishment of large-scale environmental observa-
tories. The goal of these observatory initiatives is to create a network
of instrumented sites where data are collected with unprecedented
spatial and temporal resolution, aiming at creating greater under-
standing of the earth’s water and related biogeochemical cycles and
enabling improved forecasting and management of water processes
(Montgomery et al., 2007). Within observatories, environmental
sensor networks have been proposed as part of the cyberinfras-
tructure required to generate data of both high spatial and temporal
frequency.

Estimating the flux, or mass flow rate, of a water quality
constituent requires estimates of both the constituent concentration
and the volumetric flow rate, or discharge of a stream. High
frequency monitoring of stream discharge has long been practiced by
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organizations like the United States Geological Survey (USGS) due to
the relatively simple methods and technology used to gage discharge
and the established need for water quantity measurements in
managing water resources (Nolan et al., 2005). However, high
frequency discharge monitoring is done at a relatively small number
of sites due to the costs associated with continuous monitoring.
Traditional water quality monitoring, on the other hand, is generally
done at a much greater number of sites, but involves the collection
and analysis of grab samples that are usually collected with
a frequency too low to accurately characterize the temporal vari-
ability in concentrations of water quality constituents (Etchells et al.,
2005; Scholefield et al., 2005). Even though both discharge and
concentrations are required for estimating constituent fluxes, there
is a spatial and temporal disconnect between the traditional
methods of monitoring these variables.

High frequency, in-situ monitoring can capture time periods and
characterize trends that may be omitted or overlooked by periodic
grab sampling (Kirchner et al., 2004; Tomlinson and De Carlo, 2003;
Jordan et al., 2007). For many water quality constituents (e.g., sedi-
ment and phosphorus), though, sensor technology does not
currently exist for making high frequency measurements of
concentrations in-situ. For these constituents, it is impossible or
impractical to collect samples with high frequency for extended
periods due to cost or logistical constraints, leaving us with a paucity
of data available for testing models and fostering process under-
standing (Gascuel-Odoux et al., 2009; May and Sivakumar, 2009).
Because of the limitations in existing sensor technology, many
studies have examined the use of variables that can be measured in-
situ with high frequency as surrogates for other water quality
constituents that cannot economically be measured with high
frequency.

In this paper we examine the use of surrogates for providing high
frequency estimates of water quality constituent fluxes for imple-
mentation within sensor networks supporting environmental
observatories. We focus on the observing infrastructure and
methods required to establish monitoring sites, transmit data,
develop site specific surrogate relationships, and the supporting
cyberinfrastructure required for developing continuous time series
of discharge and concentration for water quality constituents that
cannot be measured directly in-situ. We then demonstrate how this
infrastructure enables quantification of the spatial and temporal
variability in water quality constituent fluxes in ways that cannot be
accomplished using low frequency data. Section 2 provides back-
ground and discusses the use of surrogate measures for estimating
water quality constituent fluxes. In Section 3 we discuss the func-
tional requirements of the required observing infrastructure.
Sections 4 and 5 present a specific case of the general problem and
describe estimation of total suspended solids (TSS) and total phos-
phorus (TP) fluxes from continuous water level and turbidity data
collected using a wireless sensor network in the Little Bear River of
northern Utah, USA. Finally, in Section 6 we summarize our results.
2. Surrogate measures for estimating water quality
constituent fluxes

The mass flux of a water quality constituent in a river can be
expressed as the product of the constituent concentration and the
discharge. In many cases, neither discharge nor concentration can be
measured directly in-situ, limiting our ability to estimate fluxes with
high frequency. This constraint is primarily due to limitations in
existing sensor methods and technology. Measuring stream
discharge directly is difficult, and sensors are available for only
a small number of water quality constituents. However, surrogates,
which can be accurately measured with high frequency in-situ, can
enable estimates of both discharge and concentration with high
frequency.

Water level, or stage, is a common surrogate that is widely used
as an analog for discharge under the premise that discharge in
a river increases as the depth of flow increases (McCuen, 2005;
Nolan et al., 2005). For water quality constituents, a number of
different variables have historically been used as surrogates for
concentration. Discharge, for example, has been used as a surrogate
to estimate water quality constituent concentrations through rating
curves. However, a number of studies have concluded that discharge
alone is an unsatisfactory surrogate for constituents such as TSS and
TP (Phillips et al., 1999; Robertson and Roerish, 1999; Quilbe et al.,
2006; Johnes, 2007). Specific conductance, which is a measure of
the ability of water to conduct an electrical current, has been used as
an in-situ surrogate for dissolved solids concentrations and for
concentrations of ions such as nitrate, sulfate, chloride, and others
(e.g., Christensen et al., 2000; Christensen, 2001; Ryberg, 2006).
Turbidity, which is an optical measure of the scattering of light
passing through water due to colloidal and suspended matter, is also
a common surrogate that has been used for total suspended solids,
total phosphorus, total nitrogen, and fecal coliform bacteria
concentrations (e.g., Christensen et al., 2002; Ryberg, 2006; Stub-
blefield et al., 2007; Uhrich and Bragg, 2003). The choice of a water
quality surrogate depends on the properties of the constituent to be
estimated. For example, dissolved constituents are more likely to be
better predicted using specific conductance than particulate
constituents, which would be better estimated using turbidity.

In concept, most existing commercial sensors work using surro-
gates. For example, some dissolved oxygen sensors measure the
electrical current that is produced as oxygen is reduced at a cathode
as more oxygen diffuses through a thin membrane. Since the elec-
trical current is directly proportional to the dissolved oxygen
concentration, the sensor converts the current measurement into
oxygen concentration units. Similarly, use of a surrogate to estimate
discharge or concentration of a water quality constituent relies on
there being a strong correlation between the value of the surrogate
measurement and the discharge or constituent concentration. The
surrogate sensor, coupled with a relationship that converts the
sensor’s measurements to estimates of discharge or concentration,
then, effectively becomes a sensor for the variable of interest when
no in-situ sensor exists.

3. Required observing infrastructure for estimating fluxes
using surrogates

Robust observing infrastructure is required for making high
frequency estimates of water quality constituent fluxes using
surrogates due to the large volume of data generated and the need
to create continuous records. This is especially true when estimates
are needed at many different locations, as will be the case in the
proposed environmental observatories (Montgomery et al., 2007;
WATERS Network, 2008). Environmental sensor networks are well
suited for this task because they enable continuous, high frequency
monitoring, they can reduce the logistics and personnel required
for grab sampling to be representative (Grayson et al., 1997), and
they can help to eliminate errors in transcription and delays in
obtaining data (Vivoni and Camilli, 2003).

An environmental sensor network consists of an array of sensor
nodes that collect data autonomously and a communications
system that allows data collected at each node to reach a computer
server (Hart and Martinez, 2006). The required sensor network
infrastructure for estimating fluxes from surrogates can be divided
into a number of levels, or tiers. The first tier is comprised of sensor
and monitoring infrastructure that provides the observational data
at locations of interest. The second tier is the communications layer
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required to support data transmission, monitoring of data collec-
tion status, and, in some cases, control of data collection at sensor
nodes. The third tier is comprised of data storage, manipulation,
and transformation tools that are invoked once sensor data reach
a central location. Fig. 1 shows an overall schematic of this three-
tiered approach, and, in the following sections, we describe the
functional requirements for each tier.

3.1. Tier 1: sensor and monitoring requirements

At each monitoring site, or sensor node, where constituent fluxes
are to be estimated, a set of in-situ sensors is needed for providing
continuous measurements of the surrogate variables used to esti-
mate both discharge and water quality constituent concentrations.
Sensors should be positioned so that their measurements are
representative of the flux that is being monitored (e.g., as close to
the main flow of a stream as possible), while ensuring that they are
hardened against damage from adverse environmental conditions.
This can be challenging, especially at sites where there is no
permanent structure such as a bridge to mount sensors to. At remote
locations with no existing power or communications infrastructure,
sensor nodes need to be self powered, capable of unattended data
collection, capable of storing data collected between scheduled data
downloads, and capable of communicating data and messages to
a centralized location. Sensor nodes are most often battery powered,
with solar recharge capability and wireless communications
capability.

Periodic measurements of discharge and concentration of the
water quality constituent of interest are also needed at each sensor
node so that surrogate relationships can be derived. The number
and frequency of periodic measurements needed depends on: 1) the
range of discharge or concentrations experienced in the stream; 2)
the nature of the relationship between the surrogate and the vari-
able of interest (e.g., linear versus non-linear); and 3) the desired
level of certainty in the resulting surrogate relationship. Discharge
measurements are most often made using the area-velocity method
Fig. 1. Overall architecture of the observing infrastructure required to sup
described by Buchanan and Somers (1969). For water quality
constituents, samples may be collected manually by visiting each
site or by using automated samplers to collect samples during storm
or snowmelt events. Concentrations are typically determined
through laboratory analysis of the samples. Periodic measurements
should be made over the range of values to be predicted so that the
resulting relationship is representative of the values to be estimated
using the relationship.

3.2. Tier 2: communications requirements

The functionality required for sensor network communications
infrastructure includes transmission of data from sensor nodes to
a centralized location where they can be processed and used and
remote monitoring of sensor node status and performance. Addi-
tionally, in more sophisticated applications, communication with
sensor nodes may be required for remotely adjusting data collec-
tion frequency or remotely triggering event based sampling.
Although estimation of water quality constituent fluxes from
surrogates at a small number of sites does not necessarily require
communications infrastructure, scaling to a large number of sites
within an environmental observatory will. In many past applica-
tions (and even some current ones), a maintenance team visited
each monitoring site to manually download data and perform any
required site maintenance (Wagner et al., 2006). This approach
exposes sensor nodes to potentially long periods of data loss if
malfunctions occur between site visits, it precludes any between-
visit adjustments to sampling programs, and as the number of sites
grows so do the requirements for maintenance personnel. Although
the need for sensor node maintenance cannot be completely
overcome because sensors must be calibrated and serviced, the
ability to remotely monitor sensor node status and retrieve data is
invaluable in ensuring the integrity of the continuous data streams.

With recent advances in communications technologies it is
becoming easier and more affordable to establish two-way
communications with remote sensor nodes (Glasgow et al., 2004).
port estimation of water quality constituent fluxes using surrogates.
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A number of different technologies are available for building
networks to connect sensor nodes (e.g., radio frequency, cellular
phone, satellite). The specific technology chosen and the
complexity of the resulting data transmission system depends on
several factors, including the number of data collection nodes, line-
of-sight limitations from the physical terrain in which the sensors
are located, the frequency with which data need to be transmitted,
and the degree to which sensor nodes need to communicate with
each other (e.g., using sensor nodes as repeaters or routers for other
sensor nodes). In many cases, communication networks may be
made up of a combination of technologies (e.g., radio frequency and
cellular phone) as shown in Fig. 2.

3.3. Tier 3: data storage and processing

3.3.1. Data storage
Once data have been transmitted to a central location, a number

of manipulation and transformation steps may be required before
the data can be used in scientific analyses. The required functionality
of data storage infrastructure is to: 1) provide a structure that
supports the necessary manipulation, transformation, and subse-
quent analysis steps; and 2) provide a mechanism for permanent
storage of the continuous sensor measurements, results from the
periodic samples, the derived flux estimates, and all of the associated
metadata necessary for interpreting the data so that they can be
made available to users for analyses. This functionality can be facil-
itated by loading the data into a consistently formatted database.

Databases supporting sensor networks within experimental
watersheds have ranged from relatively simple, file and directory
based data stores to complex relational databases (e.g., Bosch et al.,
2007; Nichols and Anson, 2008). Modern relational database
management systems (RDBMS) provide capability for storing,
querying, and manipulating data, including a standard query
language, whereas file and directory based systems require devel-
opment of customized software tools for performing these tasks
(Connolly and Begg, 2005). Relational databases also facilitate
simultaneous access to data by multiple users, which is something
that file-based systems have historically done poorly, and can enable
Fig. 2. Common communication pathway
publication of the data on the Internet using systems like the
Consortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI) Hydrologic Information System (HIS) (http://
his.cuahsi.org). The CUAHSI HIS publishes data stored within a rela-
tional database on the Internet using Web services that transmit the
data using a standard markup language called WaterML (Zaslavsky
et al., 2007; Maidment, 2008; Horsburgh et al., 2009b).

3.3.2. Data quality assurance and quality control
Before sensor data can be used for most applications and anal-

yses they have to be passed through a set of quality assurance and
quality control (QA/QC) procedures to ensure that anomalies and
spurious data values are removed (Mourad and Bertrand-Krajewski,
2002). In-situ sensors operating in harsh environments occasionally
malfunction, some sensors are prone to fouling and drift, and
dataloggers and communication systems can corrupt data (Wagner
et al., 2006). Uncorrected errors can adversely affect the value of the
data for scientific applications, especially if they are to be used by
investigators who would have difficulty correcting for these errors
because they are not directly familiar with the measurement
methods and conditions that may have caused the anomalies
(Horsburgh et al., 2009a). QA/QC procedures generally include
correction of out of range values, correction for instrument fouling
and drift, correction of anomalous values, and correction of any
known bias in the sensor data. Wagner et al. (2006) provide
guidelines and standard procedures for correcting errors in
continuous water quality data streams. Fig. 3 shows examples of raw
surrogate data containing errors that must be corrected using QA/
QC procedures.

Out of range values (Panel (A) of Fig. 3) beyond the values
possible for a variable are generally caused by sensor or equipment
malfunctions. Excepting permanent sensor or equipment failures,
out of range values are usually short-lived (e.g., one or two simul-
taneous data values) and can be corrected by interpolation using
adjacent data. Known systematic bias in sensor measurements can
be corrected by adding an appropriate constant offset to the raw
data. Sensor fouling and drift occurs gradually over time, leading to
apparent shifts or jumps in the data when sensors are cleaned and
s in environmental sensor networks.

http://his.cuahsi.org
http://his.cuahsi.org


Fig. 3. Errors in observational data that must be corrected using QA/QC procedures.
Panel (A) shows out of range values. Panel (B) shows shifts in data caused by sensor
drift and calibration. Panel (C) shows anomalous values.
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recalibrated (Panel (B) of Fig. 3). The offset, or gap, in the data that
occurs when a sensor is recalibrated must be closed, and this is
typically done by making an assumption about the nature of the
drift (e.g., that it grows linearly over time) and then using that
assumption to back-propagate a drift correction. Equation (2)
shows an example of a linear drift correction that can be applied to
each measured value within a sensor deployment between two
calibration dates:

Vc ¼ V þ
�

Vf � Vs

��Tt � T
Tt

�
(1)

where Vc is the drift corrected data value, V is the original measured
data value, Vf is the reading of the sensor immediately before
cleaning and calibration at the end of the deployment, Vs is the
reading of the sensor immediately after cleaning and calibration, Tt

is the total time of the deployment since cleaning and calibration,
and T is the time between the end of the deployment and the
measured data value.
Anomalies are values that are within the measurement range for
a particular variable but significantly different than adjacent data
values (Panel (C) of Fig. 3). Anomalies can be artificial (e.g., debris
near the face of a turbidity sensor that causes an artificially high
reading), but they can also be the result of real transient events (e.g.,
a brief but intense storm washes sediment into a stream and causes
turbidity to rise for a short period) making them much more difficult
to correct. Evaluating anomalies can be subjective and requires
expertise in both the functioning of the sensor and the processes that
drive the sensor response. Comparison with data series from other
sites during the same time period can assist in identifying artificial
anomalies. Similar to out of range values, short-lived, artificial
anomalies can be removed by interpolation using adjacent values.

A number of studies have investigated automated anomaly and
error detection in sensor data streams, which is particularly impor-
tant in real time applications of the data and in detecting instrument
malfunctions (Hill et al., 2007; Liu et al., 2007; Mourad and Bertrand-
Krajewski, 2002). These methods are generally good at detecting and
flagging potentially erroneous sensor values (e.g., out of range
values), but because evaluation of anomalies within the measure-
ment range can be subjective, automated procedures may lack the
skill to interpret and fix anomalous values. In any case, producing
high quality, continuous data streams from raw sensor output can be
time and labor intensive, and in many cases involves both automated
and manual tools.

3.3.3. Requirements for estimation of discharge and concentration
from surrogate measurements

After surrogate data have been corrected using QA/QC proce-
dures, they must then be converted to discharge and concentration
using surrogate relationships derived from the periodic measure-
ments of discharge and water quality samples that have been
collected. Surrogate relationships can be developed using least
squares regression within statistical software. Although statistical
software can easily generate regression equations, the appropriate-
ness of the surrogate, other potential explanatory variables, and the
resulting regression parameters should be carefully examined. Here
we summarize factors that should be considered in developing
surrogate relationships. In practice, a more comprehensive text
should be consulted (e.g., Helsel and Hirsch, 2002).

A predictive relationship for discharge must be derived for each
sensor node using a surrogate such as stage. Although stage–
discharge relationships are dependent upon channel geometry and
the hydraulic conditions at each site, these relationships typically
take the form of a power function as shown in Equation (2)
(McCuen, 2005; Nolan et al., 2005):

Q ¼ bhm (2)

where Q is discharge (m3 s�1), h is stage (m), and b and m are
constants defining the relationship. Multiple stage–discharge rela-
tionships may be required for a single site in cases where one rela-
tionship is not appropriate over the entire range of discharges (Nolan
et al., 2005). As channel geometry at a site changes over time in
response to high flow and sedimentation events, the stage–
discharge relationship can change as well. Because of this, stage–
discharge relationships must be maintained by continually collecting
discharge measurements and refining the relationship as needed.

In some cases, relationships derived between surrogate
measurements and water quality constituent concentrations are also
site specific (Grayson et al., 1996; Spackman Jones, 2008) and must
be developed for each sensor node. For example, turbidity is affected
by the scattering properties of suspended particles in water, which
are a function of particle size and composition. As a result, a rela-
tionship between turbidity and suspended sediment may change
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with the source of sediment, which varies from site to site (Gippel,
1995; Kronvang and Bruhn, 1996; Tomlinson and De Carlo, 2003;
Ryberg, 2006). Like stage–discharge relationships, water quality
surrogate relationships can also be dynamic, fluctuating seasonally
and over longer time periods as land use and sources of constituent
loading change, and should be periodically refined through
continued data collection.

Inclusion of multiple surrogates or additional explanatory vari-
ables (e.g., season, discharge, temperature, etc.) can be evaluated,
although most studies have only included surrogates as predictors if
there is a physical basis for the correlation (Christensen, 2001;
Rasmussen et al., 2005). Additionally, data transformations
(particularly log transformations) are commonly used to achieve
constant variance, a linear relationship between independent and
dependent variables, or a normal distribution in residuals (Ber-
thouex and Brown, 2002). The need for data transformation varies
based on site and constituent. When surrogate relationships have
been derived with log transformations, regression-estimated
concentrations must be retransformed, introducing retrans-
formation bias. Use of a factor that corrects for this bias can improve
predicted concentrations (Helsel and Hirsch, 2002).

There may also be outlier points due to measurement errors or
inconsistency between sampled concentration and the water
passing in the range of the sensors. Outliers can heavily influence
least squares regression and can be considered for removal, but only
after they are closely examined. Helsel and Hirsch (2002) describe
tests for assessing whether outliers should be omitted from regres-
sion analysis as well as regression techniques that are less sensitive
to outliers. Table 1 shows water quality surrogate relationships that
have been extracted from a number of studies and demonstrates the
form that these relationships can take for different constituents.

3.3.4. Uncertainty estimation
In quantifying uncertainty, there are several potential sources of

error in the estimated fluxes: 1) measurement error in the surrogate
sensor data; 2) measurement error in the periodic observations of
discharge and constituent concentrations from which the surrogate
relationships are derived; and 3) error in the derived surrogate
relationships. Although they do not address uncertainty in in-situ
water quality sensor measurements, Harmel et al. (2009) provide an
excellent discussion of uncertainty introduced through discharge
measurements, water quality sample collection, preservation,
storage, and laboratory analysis. Measurement error for in-situ
sensors is typically reported by instrument manufacturers, but can
also be quantified using multiple instrument tests where resources
allow. Measurement error in the periodic observations of discharge
and constituent concentrations can be quantified by taking replicate
samples and making replicate measurements to derive the
components of the measurement error variance (Berthouex and
Brown, 2002).

A number of authors have used measures of error in the
regressions such as the coefficient of determination (R2), the root
mean square error (RMSE or MSE), and the relative percent differ-
ence (RPD) to provide an indication of the uncertainty in the esti-
mates (Christensen et al., 2002; Ryberg, 2006; Stubblefield et al.,
2007). Although these statistics are useful for assessing the appro-
priateness of the surrogate relationships, the uncertainty in the
predicted values can be quantified using confidence or prediction
intervals (Berthouex and Brown, 2002; Helsel and Hirsch, 2002).
Confidence intervals give the range, to a specified degree of confi-
dence, within which the mean value of a response variable is
expected to fall. Prediction intervals, on the other hand, give the
range, with a specified probability, expected to contain the value of
a single new observation of the response variable. Not only does the
prediction interval address uncertainty in the derived relationships,
but it also incorporates unexplained variance in the response vari-
able (i.e., described above as 2) (Helsel and Hirsch, 2002).

Once the uncertainty in concentration and discharge estimates
has been quantified, the uncertainty in the flux can be estimated
using one of several error propagation techniques such as first order
error analysis, Monte Carlo simulation, or bootstrapping. First order
error analysis evaluates the variance in the estimation of constituent
flux given the variances of concentration and the discharge, as given
by Equation (2):

VarðWÞ ¼
�

vW
vC

�2

c
VarðCÞ þ

�
vW
vQ

�2

Q
VarðQÞ

þ 2
�

vW
vC

�
C

�
vW
vQ

�
Q

CovðC;QÞ (3)

where W is the flux, or mass loading, of the water quality constit-
uent, C is concentration, and Q is discharge. The covariance term
can be omitted if concentration is independent of discharge;
however, the covariance may be negative and reduce the overall
variance in the load (Berthouex and Brown, 2002). First order error
analysis is appropriate where the surrogate relationships are linear.
For non-linear equations or for periods that the stage–discharge
relationship is non-linear, simulation techniques are more
appropriate.
4. A case study for estimating total phosphorus and total
suspended solids fluxes: the Little Bear River sensor network

A wireless sensor network has been established in the Little Bear
River of northern Utah, USA that demonstrates a specific case of the
general problem of estimating water quality constituent fluxes
from surrogates. Using the Little Bear River sensor network, high
frequency TSS and TP fluxes are estimated from in-situ turbidity
and stage measurements at a number of sensor nodes. Each of the
components of the general architecture described above has been
applied in the Little Bear River, and here we describe their specific
implementations within the Little Bear River sensor network.
4.1. Sensors and monitoring

Seven sensor node locations were selected to characterize the
major hydrologic conditions in the Little Bear River watershed and
to represent the range of land use conditions, with preference given
to locations that would provide the most information given our
limited resources. In addition, site selection was dependent on the
presence of a bridge or other permanent structure to which the
sensors could be mounted, the ability to obtain permission to access
the site, the ability to establish a stream cross section suitable for
development of a stage–discharge relationship, and the ability to
establish communications with the site to retrieve the data. Fig. 4
shows the locations of the sensor nodes within the Little Bear River
watershed.

Each sensor node consists of in-situ stage and turbidity sensors
connected to a datalogger. The dataloggers were programmed to
collect data every 30 min and store it in the datalogger’s onboard
memory. The dataloggers use the SDI-12 communication protocol
to communicate with the each of the sensors. Sensors were
installed as close to the main flow of the river as possible and were
enclosed within PVC pipe housings to protect them from debris and
vandalism (Fig. 5). The PVC sensor housings were fitted with metal
pump screens into which the sensors extend to ensure adequate
water flow-through and to protect the sample space around each of
the sensors. Sensors are removed and cleaned in the field at least
once every two weeks.



Table 1
Examples of surrogate relationships for water quality constituents.

Constituent Surrogates Regression equation Source

Alkalinity (ALK) Discharge (Q), Water Temperature (WT) log ALK ¼ 0.000368Q � 0.000148WT2 þ 2.36 Christensen (2001)
Specific Conductance (SC), Discharge (Q) ALK ¼ 0.165SC � 54.3log Q þ 261 Ryberg (2006)
Specific Conductance (SC) log ALK ¼ 0.516 log SC þ 0.746 Rasmussen et al. (2005)

Dissolved Solids (DS) Specific Conductance (SC) DS ¼ 0.549SC þ 14.3 Christensen (2001)
Specific Conductance (SC) DS ¼ 0.689SC � 52 Ryberg (2006)
Specific Conductance (SC) log DS ¼ 0.966 log SC � 0.115 Rasmussen et al. (2005)

Suspended Solids (SS) Turbidity (TURB) log SS ¼ 0.818 log TURB þ 0.348 Christensen (2001)
Discharge (Q), Turbidity (TURB) log SS ¼ 0.213 log Q þ 0.814 log TURB � 0.092 Ryberg (2006)
Turbidity (TURB) SS ¼ 1.45*TURB1.08*1.13 Uhrich and Bragg (2003)
Turbidity (TURB) ln SS ¼ 1.04 ln TURB � 0.535 þ 0.326 Tomlinson and De Carlo (2003)
Turbidity (TURB) SS ¼ 3.29TURB�6.54 Stubblefield et al. (2007)
Turbidity (TURB) SS ¼ �0.76 þ 0.92TURB Grayson et al. (1996)
Turbidity (TURB) TURB ¼ SS0.71 Kronvang and Bruhn (1996)

Total Nitrogen (TN) Turbidity (TURB), Water Temperature (WT), Specific Conductance (SC) TN ¼ 0.00317TURB þ 0.0234WT � 0.0000655SC þ 0.469 Christensen (2001)a

Turbidity (TURB), Discharge (Q) TN ¼ 0.0042TURB � 0.000089Q þ 0.494 Christensen et al. (2002)
Discharge (Q), Day of Year (D) TN ¼ 0.422 log Q þ 0.699 cos(2pD/365) � 0.318sin(2pD/365)

þ 0.4cos(4pD/365) � 0.202 sin(4pD/365) þ 0.03
Ryberg (2006)

Discharge (Q), Turbidity (TURB) log TN ¼ 0.111 log Q þ 0.0004TURB � 0.0585 Rasmussen et al. (2008)

Total Phosphorus (TP) Turbidity (TURB), Specific Conductance (SC), Water Temperature (WT) TP ¼ 0.00103TURB � 0.227 log SC þ 0.0057WT þ 0.776 Christensen (2001)
Turbidity (TURB) TP ¼ 0.000606TURB þ 0.186 Christensen et al. (2002)
Discharge (Q), Turbidity (TURB), Day of Year (D) TP ¼ 0.111logQ þ 0.353logTURB þ 0.056cos(2pD/365)

� 0.047sin(2pD/365) � 0.734
Ryberg (2006)

Turbidity (TURB) TP ¼ 26.7 þ 1.58TURB Grayson et al. (1996)
Turbidity (TURB) TP ¼ 0.0012TURB þ 0.152 Rasmussen et al. (2008)

Fecal Coliform (FC) Water Temperature (WT), Turbidity (TURB) log FC ¼ �3.4 log WT þ 0.432 log TURB þ 6.53 Christensen (2001)
Turbidity (TURB), Discharge (Q), Specific Conductance (SC), Day of Year (D) log FC ¼ �0.527 sin(4pD/365) � 0.82 cos(4pD/365)

þ 0.0113TURB þ 2.2log Q þ 0.00045SC � 3.71
Christensen et al. (2002)

Turbidity (TURB) log FC ¼ 1.641 log TURB � 0.121 Rasmussen et al. (2008)

Sodium (NA) Specific Conductance (SC), Discharge (Q) NA ¼ 0.203SC þ 0.0938Q � 117 Christensen (2001)
Specific Conductance (SC) log NA ¼ 1.46 log SC � 2.39 Rasmussen et al. (2005)

Chloride (CL) Specific Conductance (SC), Discharge (Q) CL ¼ 0.319SC þ 0.113Q � 172 Christensen (2001)
Specific Conductance (SC), Discharge (Q) CL ¼ �9.55 log Q þ 0.011SC þ 38.8 Ryberg (2006)
Specific Conductance (SC) log CL ¼ 1.74 log SC � 3.14 Rasmussen et al. (2005)

Fluoride (F) Specific Conductance (SC), Discharge (Q) log F ¼ �0.000255Q þ 0.162 log SC � 0.892 Christensen (2001)
Specific Conductance (SC) log F ¼ 0.217 log SC � 1.1 Rasmussen et al. (2005)

Sulfate (SO) Specific Conductance (SC) SO ¼ 0.0268SC þ 13.17 Christensen (2001)
Specific Conductance (SC), Discharge (Q) log SO ¼ 0.128 log Q þ 0.011SC þ 38.8 Ryberg (2006)
Specific Conductance (SC) log SO ¼ 1.12 log SC � 1.28 Rasmussen et al. (2005)

a The equation reported is for total organic nitrogen.
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Fig. 4. Locations of sensor nodes in the Little Bear River watershed.
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At sensor node locations, grab samples for TP and TSS are
collected weekly during the spring snowmelt season (March through
June) and every other week during the rest of the year to provide the
data necessary for deriving surrogate relationships. Additionally,
storm event and spring snowmelt event samples have been collected
using portable automated samplers to ensure that expected periods
of high flux are characterized. Samplers are deployed either when
precipitation is expected or when a significant snowmelt event is
expected. Manual discharge measurements are made seasonally to
ensure that a wide range of flows is captured at each location.
Fig. 5. Schematic of a typical sensor deployment.
4.2. Communications

Surrogate data from each sensor node are transmitted in near
real time to the Utah Water Research Laboratory (UWRL) via
a communications network. The network uses 900 MHz spread-
spectrum radios for transmitting data from sensor nodes to one of
two remote base stations located at public schools within the
watershed. Because the distances between sensor nodes are rela-
tively large (up to 7 km) and the watershed has high relief (Fig. 4),
two radio repeaters were installed to extend the reach of the
network. From the remote base stations, the data are transmitted
using Ethernet TCP/IP links (established using Campbell Scientific
Network Link Interfaces) to a server at the UWRL.

Communications within the network are managed using
Campbell Scientific’s Loggernet software (http://www.campbellsci.
com). Loggernet enables us to monitor sensor node status in real
time, regularly retrieve data from each of the sensor nodes, and
send new programs or instructions to each of the sensor nodes
from a server located at the UWRL. This communication system was
chosen because it uses established commercial technology, elimi-
nates monthly service costs, has relatively low power require-
ments, and provides us with flexibility for accepting new sites onto
the existing network. The LoggerNet server is programmed to
connect hourly to each sensor node and download the most recent
data to delimited text files.
4.3. Data storage and processing

At the UWRL, the water level and turbidity data and supporting
metadata are automatically loaded from the datalogger files into
a relational database that implements the CUAHSI HIS Observations

http://www.campbellsci.com
http://www.campbellsci.com
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Data Model (ODM) (Horsburgh et al., 2008) using the Streaming
Data Loader software application, which is also part of the CUAHSI
HIS. The Streaming Data Loader maps each of the datalogger files to
the ODM schema to ensure that appropriate metadata are associ-
ated with the data values and then automatically loads the sensor
data into the database. Execution of the Streaming Data Loader is
scheduled so that the most recent values are always available in the
database.

Once they have been loaded into the database, the surrogate
measurements are corrected by a technician using a combination of
graphical techniques and the quality control procedures described
above. New values are processed approximately once per month.
Many of the QA/QC techniques discussed above have been imple-
mented within a software application called ODM Tools (also part of
the CUAHSI HIS), which provides the technicians with a graphical
user interface for performing quality control of data. ODM Tools
provides functionality for removing obvious errors or out of range
values, sensor malfunctions, and instrument drift. All corrections
and edits are performed on a copy of the raw data to ensure that the
original data are preserved. ODM is capable of storing multiple
copies, or versions, of each time series, with each version identified
by the level of quality control to which it has been subjected. ODM
also preserves the provenance of the data by storing the linkage
between raw and corrected data values.

Least squares regression was used to develop stage–discharge,
turbidity-TP, and turbidity-TSS relationships at each site. Because
many of the TP samples collected at each site had concentrations
below the detection limit of the method used by the analytical
laboratory, regression with maximum likelihood estimation (MLE)
was performed using techniques described by Helsel (2005) to
account for below detection limit observations. Besides turbidity,
additional explanatory variables (e.g., discharge, temperature, hour
of day) were examined for significance in the surrogate relationships.
Fig. 6. Spatial distribution of total suspended solids fluxes in the Little Bear River for 2008
which are expressed in metric tons.
Variables representing the hydrologic conditions (i.e., the occurrence
of spring snowmelt or a storm event) at the time of sample collection
were also explored. The model equations that were ultimately
selected provided the minimum root mean square error values, and
all of the explanatory variables had p-values within the 95% signifi-
cance level.

The corrected surrogate data from each sensor node were con-
verted to time series of discharge and concentration using the
derived surrogate relationships. The derived time series were
stored within the database so that they were available for analyses
and so they could be manipulated using the query tools available in
the database management system. Finally, TSS and TP fluxes were
examined by multiplying the discharge data series by the concen-
tration data series to create time series of TSS and TP fluxes. All of
the data collected in the Little Bear River, including the continuous
measurements of water level and turbidity, the quality controlled
versions of these, the periodic water quality grab sampling results,
and the derived datasets (e.g., continuous discharge from water
level and TSS and TP from turbidity) have been published using the
CUAHSI HIS data publication system (Horsburgh et al., 2009b) and
are available via http://littlebearriver.usu.edu.

4.4. Results and discussion

4.4.1. Spatial variability in Little Bear River TSS fluxes
Fig. 6 shows the total annual TSS fluxes at 5 sensor nodes in the

Little Bear River watershed for water year 2008. Annual fluxes tend
to increase in a downstream direction until the river reaches Hyrum
Reservoir, where much of the sediment carried by the river is
trapped. This is reflected by a relatively low flux at the node
immediately below the reservoir (Node 6 at Wellsville), although
this is also due to diversions of water from the reservoir outflow that
result in reduced discharge at that node. At the most downstream
. The areas of the node markers are proportional to the total suspended solids fluxes,

http://littlebearriver.usu.edu


Fig. 7. Timing of discharge and total suspended solids fluxes for several sensor nodes in the Little Bear River during 2008.



Fig. 8. Discharge and 30-min total phosphorus fluxes for water years 2006 and 2007 at the Mendon and Paradise sensor nodes.

Fig. 9. Total suspended solids concentrations predicted from turbidity for the lower South Fork Little Bear River sensor node (Node 5) during the spring of 2008. The top panel
shows weekly TSS samples along with a 24-h snowmelt sampling event on April 14–15. The bottom panel shows a zoomed view of the 24-h sampling event. The grey shaded area
shows the 95% prediction intervals for the estimated TSS concentrations.
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node (Node 7 at Mendon), the annual flux is again relatively high
due to sediment laden agricultural return flows that heavily influ-
ence the river.

Fig. 7 shows the cumulative percentage of discharge and TSS flux
based on high frequency flux estimates for the year 2008. Five
locations in the Little Bear River watershed are shown to illustrate
the timing of discharge and TSS flux at different nodes. Nodes in the
upper watershed above Hyrum Reservoir (Node 1 Upper South Fork,
Node 2 Lower South Fork, and Node 5 at Paradise) show steep flux
curves during the spring. At these nodes, the flux curve is steeper
than the discharge curve indicating that the timing of the TSS flux is
not simultaneous with discharge and is weighted towards the
beginning of the spring snowmelt period. The Wellsville node (Node
6) also exhibits a relatively steep flux curve during the spring, but
TSS flux and discharge are more similarly timed. Discharge and TSS
flux at the Mendon node (Node 7) are similarly timed, but they show
a much more gradual slope throughout the year.

The spatial variability and timing of the total annual flux reveal
important information about the flow pathways and processes that
carry water quality constituents to the stream and through
a watershed. At nodes above Hyrum Reservoir, TSS flux is primarily
driven by snowmelt, which is reflected in the steep slope of the
cumulative flux plots during a relatively short period during the
spring when the snow is melting. Much of the TSS flux occurs near
the beginning of the snowmelt period, which is likely due to the
fact that snow at lower elevations close to the stream channels
melts first, carrying TSS to the stream through surface pathways. As
snowmelt moves further away from active streams, the water
contributing to stream discharge is less likely to carry TSS. Addi-
tionally, as discharge and stream velocities increase with snowmelt,
sediment stored in the stream channel is transported until the
storage of TSS within the channel is exhausted later in the snow-
melt period.

Hyrum Reservoir (Fig. 4) serves as a reset point for water quality
and effectively divides the Little Bear River watershed in two. TSS
flux at Wellsville (Node 6) is driven by spills from Hyrum Reservoir
that occur for a short period after it fills in the spring. Consequently,
approximately 90% of the annual TSS flux at Wellsville occurs
between the months of March and May. After the end of May, nearly
all of the discharge that would normally be in the river at Wellsville is
either diverted for irrigation (until the end of the irrigation season)
or is stored in Hyrum Reservoir, which is why very little discharge or
TSS flux occurs after the beginning of June. At Mendon (Node 7),
discharge and TSS flux are driven by springtime spills from Hyrum
Reservoir and by sediment enriched agricultural return flows during
the irrigation season (April–September). Additionally, the river
channel between Wellsville and Mendon cuts through fine soil
material that contributes to more constant streambed and bank
erosional processes that are not as prominent in the upper
watershed.

4.4.2. Temporal variability in Little Bear River phosphorus fluxes
Time series of discharge and TP fluxes for the 2006 and 2007

water years at the Paradise (Node 5) and Mendon (Node 7) sensor
nodes are shown in Fig. 8. Fig. 8 illustrates the large interannual
variability in both discharge and constituent loading that can occur
within the Little Bear River. This is particularly apparent in the data
for the Paradise sensor node, which is located above Hyrum
reservoir and is much more susceptible to variability in natural
flows (2007 was a low flow year when compared to 2006). Flows at
the Mendon sensor node, which is located below Hyrum reservoir,
are increased by agricultural return flows throughout much of the
summer, significantly altering the natural flow and TP flux regime.
Fig. 8 underscores the importance of monitoring over long periods
to better quantify the range of hydrologic conditions that can occur.
4.4.3. Measurement error and uncertainty
Measurement error and uncertainty in the derived surrogate

relationships can have a substantial effect on the uncertainty of flux
estimates made using surrogates. This should certainly be taken
into account when interpreting fluxes derived from surrogates.
Fig. 9 shows TSS concentrations predicted from turbidity for the
lower South Fork Little Bear River sensor node (Node 5) during the
spring of 2008. Also shown are 95% prediction intervals for the TSS
estimates, and observed TSS concentrations. The top panel shows
weekly TSS samples along with a 24-h snowmelt sampling event on
April 14–15 (one sample per hour), and the bottom panel shows
a zoomed view of the 24-h snowmelt event. In these plots, the TSS
concentrations predicted using the surrogate relationship agree
well with the observed concentrations. The prediction intervals
show the uncertainty in the predicted concentrations resulting
from uncertainty in the surrogate relationship.

Fig. 9 also shows the dynamic nature of turbidity and TSS at this
site and demonstrates how weekly TSS observations do not capture
this variability. While the hourly samples in the 24-h snowmelt
event do well at characterizing one of the days where TSS concen-
trations ranged from approximately 150–1200 mg/L, sampling
every hour to characterize all of the peaks would be cost prohibitive.
Despite the uncertainty in the surrogate relationships, concentra-
tions and fluxes estimated using continuous surrogate data are
preferable to the alternative of estimates based on a handful of
samples because the continuous data capture the dynamics of the
system at a time scale that is consistent with the processes that are
occurring (in this case daily cycles in spring snowmelt).

5. Conclusions

In this paper, we have presented the observing infrastructure
and methods needed for making long-term, high frequency esti-
mates of water quality constituent fluxes from surrogates. Our
examples from the Little Bear River show how high frequency data
that are consistent with the spatial and temporal scale of processes
that control variability in the fluxes and stores of water and water
borne constituents can assist us in better understanding the
mechanisms and flow paths that carry constituents through
watersheds. However, until sensor technology advances to the
point where affordable and reliable in-situ sensors are available for
all of the water quality constituents in which we are interested,
high frequency estimation of constituent fluxes in streams and
rivers will likely rely on existing surrogate sensors.

The Little Bear River sensor network case study demonstrates
a specific implementation of the sensor and monitoring, commu-
nications, and data storage and processing infrastructure required
for creating a network of flux monitoring sites. As sensor networks
continue to be implemented in support of scientific research within
environmental observatories and at other data-intensive research
sites, the need will grow for robust and automated infrastructure
for collecting and storing the large data volumes, monitoring data
collection status, correcting and processing the data, and making
the data available to analysts. The innovative combination of
methods and tools that we have described, including the compo-
nents of the CUAHSI HIS that we adopted to support our work,
certainly advances capabilities for implementation at other sites.

The Little Bear River sensor network shows how the common
spatial and temporal disconnect between traditional methods of
monitoring discharge and water quality constituent concentrations
can be overcome. The specific results from the Little Bear River that
we have presented are examples of the types of analyses that are
enabled by implementing the observing infrastructure that we
have described and demonstrate the value of high frequency flux
estimates in furthering our understanding of water quality
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constituent fluxes and important flow pathways that carry them.
Future refinements of the surrogate methods that we have pre-
sented are needed to ensure that the sampling protocols are effi-
cient – i.e., minimizing costs while achieving acceptable accuracy in
the resulting flux estimates. This will involve better methods for
deciding how many grab samples are needed to establish and
maintain surrogate relationships and using adaptive monitoring to
decide when to collect those samples so that they contain the most
information.
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