A Vision for Future Apple Orchards

Terence Robinson
Dept. of Horticulture, Cornell University, Geneva, NY 14456

Where will we be in 20 more years?

In the Last 50 Years Orchards Have Evolved from Multi-Leader Trees on Seedling Rootstocks at 40 Trees/Acre to the Tall Spindle on M.9

There exists a confluence of technologies that make apple growing very interesting and profitable in 2019

- New Rootstocks
- Improved Fruit Quality
- High Early Yield (1,300 bu/acre)
- Reduced labor costs
- High Mature Yield (1,400-2,000 bu/acre)

A Vision for the orchard of the future

Collapse of market for traditional varieties

There is a rapidly shrinking market for
- McIntosh
- Empire
- Red Delicious
- Jonagold
- Golden Delicious

For many growers this is a serious threat to their business plan and convinces some to leave apple growing.

However, there is an opportunity for great profitability with new varieties.

This requires new plantings with a high capital requirement.
New Varieties
Most are protected and grown in clubs
From New Zealand
- Jazz
- Envy
- Koru
- Sensa
- Sweetie
From USA
- Sweetango
- Snapdragon
- Pazazz
- Riverbelle
- Cosmic Crisp
- Ruby Frost
- Evercrisp
- Sweetcheeks
- Premart Honeycrisp
- Barnsby Pink Lady

High Priced Varieties have Huge Impact on Profitability

The optimum planting density is 3200 trees/ha (range 2800-4000)
Cumulative production over the first 13 years of the highest density was 2 times greater than the lowest density.
With Several New Rootstock Options of Varying Vigor Levels
Selecting the Rootstock that Gives the Best Combination of
Growth and Yield for the Variety We are Planting – Designer
Rootstocks

G.11, G.213 for strong varieties
G.41 for weak varieties or replant
G.935 or G.969 for very weak varieties

1. New Rootstocks from Geneva® which tolerate fire blight and replant
disease

- G.65
- G.11
- G.41
- G.214
- G.222
- G.30
- G.890
- M.9 T237
- M.9 PAJ2
- M.26
- M.7-MM106

Geneva® Rootstocks by Tree Size
from 10 WTFRC Trials 2002 to 2013

- G.11
- G.41
- G.935
- G.214
- G.210
- G.222
- G.16
- G.202
- G.30
- G.890

Dwarfing rootstocks for Utah
- G.11
- G.213
- G.41
- G.214
- G.935
- G.814
- G.202
- G.969
- G.210
- G.890
G.213
- Vigor similar to M.9 Pajam2
- Good yield efficiency
- High productivity 125% of M.9
- Very good precocity
- Resistant to Fire Blight, Crown Rot and Wooly Apple Aphid
- Replant tolerant
- Some spines in stool bed propagation
- Reduced chill requirement

G.213 Vacaria, Brazil

G.41 Fuji
- M.9 Pajam2 vigor
- Very high yield efficiency
- Highly productive
- Very precocious
- Resistant to replant disease
- Very cold hardy
- Does well in warmer climates (Mexico)
- Highly resistant to Fire Blight and Crown Rot and Wooly Apple Aphid
- Difficult to propagate
- Brittle graft union with some cultivars

![Graph](image-url)
Several Geneva® Rootstocks Tolerate Replant Disease

$247,000/ha

$82,500
G.214
- Vigor similar to M.9 Paj.2
- Highly yield efficient
- Highly productive (most U.S. trials yields 125% of M.9 check)
- Good precocity
- Resistant to Fire Blight, Crown Rot and Wooly Apple Aphid
- Replant tolerant
- Very good stool bed propagation
- Strong Graft Union

G.814
- Size similar to M.26
- Precocious, productive
- Promotes larger fruit size
- Horizontal branches
- Immune to fire blight, and resistant to crown rot
- Very tolerant to apple replant disease
- Susceptible to Wooly Apple Aphid
- Very susceptible to viruses (ASPV, ASGV, ACLV)
- Good rooting in stoolbed

G.935 Torres Fuji Virus

G.814 Torres Fuji Virus

G.202
- Size similar to M.26
- Precocious, productive
- Resistant to woolly apple aphid, fire blight, and crown rot
- Tolerant to apple replant disease
- Good choice for weak growing cultivars like Honeycrisp
- Moderate rooting in stoolbed
G.969

- Vigor between M.26 y M.7
- Very efficient and productive
- Very cold tolerant
- Resistant to fire blight
- Resistant to Phytophthora
- Resistant to Wolly Apple Aphid
- Good Anchorage
- Excellent rootstock for weak scions like Honeycrisp
G.210

- Vigor similar to M.7
- Precociously productive
- Yield efficiency similar or better than M.9
- Resistant to apple replant disease.
- Resistance to woolly apple aphid, fire blight, and crown rot.
- Good rooting in stoolbed; few spines.
- Great for Organic Production

Conclusions

- Rootstocks not only affect tree size, yield efficiency and fruit size but also branch angle, return bloom, biennial bearing, mineral nutrient profile and bitter pit.
- Nutrient profiles were very different among rootstocks.
- This leads to the goal of “designer rootstocks” which combine the rootstock characteristics needed to maximize the potential of each scion cultivar in a particular climate.

NY Targets for Early Yield

- 300 bu/ac in the second leaf
- 600 bu/ac in the third leaf
- 1,000 bu/ac in the fourth leaf
- 1,400 bu/ac in the fifth leaf

A total of 3,300 bu/ac over the first 5 years

The right rootstock will result in high early yields will pay back the initial investment by the end of year 5
Strategies for Early Fruit Production
- No Pruning at Planting (except the removal of large feathers)
- Limb bending below horizontal soon after planting

Early Yield has a large Impact on Profitability

Maximize Early Yield While not Reducing Later Yields Due to Poor Tree Growth
- Fill space by the end of the second year
 - Excellent soil Preparation
 - High Quality Trees
 - Early Spring or Fall Planting
 - Intensive Irrigation
 - Intensive Fertility
 - Excellent Weed Control
- Manage crop load in years 2-4 to 5 fruits/cm² TCA for Gala and 4 fruits/cm² for Honeycrisp

Tall narrow canopies will have higher yields (1,500-2,000 bu/acre)
- 70-75% Light Interception is Optimum
- Tree Height = Between Row Spacing * 0.8-1.2 give 75% light interception

Pedestrian Orchards have moderate light interception and moderate yields unless row spacing is 7-8 ft.

Taller Trees intercept more light and have higher yields.
Higher fruit quality can be achieved with narrow canopies +

- Good Light Distribution in the Canopy
 - Sufficient light penetrates only 1m into the canopy
 - Narrow canopies produce the best fruit quality

- Hail Nets
 - Crop insurance does not fully compensate the loss of high-value varieties

- Shade Cloth
 - Reduces sunburn

- Reflective Film
 - Increases fruit color

Simple and Thin Canopies are More Adaptable to Partial Mechanization Than Thick Complex Canopies

- Pruning
- Hand Thinning
- Tree Training
- Trellis Construction
- Pheromone Dispensing
- Summer Pruning
- Harvest

The simple pruning recipe of the Tall Spindle is well adapted to the use of motorized platforms to reduce pruning costs

- The best fruit growers in NY have reported reductions in dormant pruning labor of 25–40% if the trees are grown in the Tall Spindle system.

<table>
<thead>
<tr>
<th>Simple and Inexpensive Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25,000</td>
</tr>
<tr>
<td>$12,500</td>
</tr>
</tbody>
</table>

The Wafler and Vandewalle Experience

- Previous hand pruning for Gala = 40 hours/acre X $10/hour = $400 per acre
- With Simple Platforms = 18 hours per acre X $10/hour = $180/acre
- Savings per acre = $220/acre
Mechanical Summer Pruning to Reduce Labor Cost

- Disastrous results in the 1960’s and ’70s
- What is different now
 - Orchards are more suitable
 - Dwarfing rootstocks
 - Calm trees
 - Small pendant fruiting branches
- Summer pruning timing
 - Less regrowth
 - Flower buds on end of regrowth
- High labor costs are pushing labor savings approaches

NY Summer Shearing Studies

<table>
<thead>
<tr>
<th>Variety</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuji/M.9</td>
<td>18.4</td>
<td>18.6</td>
<td>13.8</td>
</tr>
<tr>
<td>Golden/M.9</td>
<td>18.8</td>
<td>14.1</td>
<td>12.9</td>
</tr>
<tr>
<td>Jonagold/M.9</td>
<td>12.8</td>
<td>16.0</td>
<td>15.2</td>
</tr>
<tr>
<td>Gala/M.9</td>
<td>8.7</td>
<td>12.3</td>
<td>11.3</td>
</tr>
<tr>
<td>Average</td>
<td>12.2b</td>
<td>15.2a</td>
<td>13.3ab</td>
</tr>
</tbody>
</table>

Flower Clusters per Cut

<table>
<thead>
<tr>
<th>Variety</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuji/M.9</td>
<td>2.8</td>
<td>2.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Golden/M.9</td>
<td>2.8</td>
<td>2.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Jonagold/M.9</td>
<td>2.5</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Gala/M.9</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Average</td>
<td>2.4a</td>
<td>2.1b</td>
<td>1.8c</td>
</tr>
</tbody>
</table>

Strategy for Summer Hedging

1. Begin in year 5 with a hedging treatment in dormant season to define the “box”
2. Follow with a good dormant pruning leaving only small branches.
3. Use mechanized summer hedging in the summer (late June) then
4. A corrective dormant pruning each year to remove limbs that have become too large and remove small weak wood to manage flower bud load.

Mechanization of Pruning in Summer

Harvest Mechanization

Harvest labor represents 1/3 of the annual labor costs
Harvest labor is becoming increasingly more expensive and less available

Also ladders are a liability
Harvest Assist Machines Offer Greater Opportunities

- Motorized platforms can improve harvest labor efficiency of the Tall Spindle by 15-25%.

European Platforms have not been adopted in the US:
1. Picking rates are already higher in the US (5-8 bins per day) than many other places in the world (3 bins/day).
2. The increase in efficiency has been small (20%) compared to the cost of the machine ($100k).
3. The bin fillers are believed to cause some bruising.

The Wafler Harvest Assist Machine
Positions the bins close to the worker in an innovative slanted system to eliminate the inefficiencies of climbing ladders and walking to the bin.
• A crew of 8 pickers works on and operates the machine
• They harvest all levels of the tree at same time

Bandit Express Machine
Inexpensive ~$60,000
Harvest only the tops with a separate ground crew harvesting the bottoms

<table>
<thead>
<tr>
<th>Machine</th>
<th>Number of Pickers</th>
<th>Bins per Day</th>
<th>Acres/Season</th>
<th>Bins/Season</th>
<th>Cost of Machine</th>
<th>Cost/bin harvested</th>
<th>Labor Savings/bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human w Ladder 1</td>
<td>6</td>
<td>6</td>
<td>4.8</td>
<td>288</td>
<td>~$12.5</td>
<td>$0.04</td>
<td>$0</td>
</tr>
<tr>
<td>Platforms (Blosi)</td>
<td>4</td>
<td>32</td>
<td>51</td>
<td>1536</td>
<td>~$60,000</td>
<td>$3.90</td>
<td>$9</td>
</tr>
<tr>
<td>DHR</td>
<td>4</td>
<td>32</td>
<td>26</td>
<td>1536</td>
<td>~$150,000</td>
<td>$9.76</td>
<td>$9</td>
</tr>
<tr>
<td>Pickar Tec</td>
<td>4</td>
<td>32</td>
<td>26</td>
<td>1536</td>
<td>~$250,000</td>
<td>$16.27</td>
<td>$9</td>
</tr>
<tr>
<td>Argiles</td>
<td>8</td>
<td>64</td>
<td>51</td>
<td>2448</td>
<td>~$125,000</td>
<td>$5.10</td>
<td>$9</td>
</tr>
<tr>
<td>Pluck O-Trac</td>
<td>6</td>
<td>48</td>
<td>38</td>
<td>2304</td>
<td>~$180,000</td>
<td>$3.47</td>
<td>$9</td>
</tr>
<tr>
<td>Imperador Brazil1/4</td>
<td>32</td>
<td>51</td>
<td>1536</td>
<td>2448</td>
<td>~$400,000</td>
<td>$2.60</td>
<td>$9</td>
</tr>
<tr>
<td>Bandit Xpress</td>
<td>4</td>
<td>32</td>
<td>51</td>
<td>2448</td>
<td>~$60,000</td>
<td>$2.45</td>
<td>$9</td>
</tr>
<tr>
<td>Wafler</td>
<td>8</td>
<td>64</td>
<td>51</td>
<td>2448</td>
<td>~$60,000</td>
<td>$2.45</td>
<td>3.8yrs</td>
</tr>
</tbody>
</table>

Estimates of harvest assist machine performance, cost per bin and labor savings per bin
The possibility of reducing labor costs by combining the Tall Spindle system with partial mechanization

<table>
<thead>
<tr>
<th>Labor Input</th>
<th>Traditional VA Trees (1000 bu/ac with ladders)</th>
<th>Tall Spindle Trees (1500 bu/ac with machines)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dormant Pruning</td>
<td>50 hours/acre</td>
<td>20 hours/acre</td>
</tr>
<tr>
<td>Tree Training</td>
<td>10 hours/acre</td>
<td>10 hours/acre</td>
</tr>
<tr>
<td>Hand Thinning</td>
<td>60 hours/acre</td>
<td>30 hours/acre</td>
</tr>
<tr>
<td>Summer Pruning</td>
<td>40 hours/acre</td>
<td>1 hour/acre</td>
</tr>
<tr>
<td>Total Pre-harvest</td>
<td>160 hours/acre</td>
<td>61 hours/acre</td>
</tr>
<tr>
<td>Harvest</td>
<td>75 hours/acre</td>
<td>70 hours/acre</td>
</tr>
<tr>
<td>(6 bins/person/day)</td>
<td></td>
<td>(10 bins/person/day)</td>
</tr>
<tr>
<td>Total annual labor input</td>
<td>235 hours/acre</td>
<td>131 hours/acre</td>
</tr>
</tbody>
</table>

Partial Mechanization can Significantly Improve Profitability

What will the orchard of the future look like?
- Orchards will have high yields in the first 5 years (3,300 bu) using feathered trees.
- Orchards will have thin, narrow canopies which will have high yields and uniform fruit quality and will be more adaptable to harvest and pruning assist machines.
- Orchards will have more uniform fruit quality through precision orchard management.
- Orchards will have densities between 1,000-1,400 trees/acre

Robot-ready orchard designs that have planar (2D) orchard designs
What should you take home

- Plant new orchards only with high priced varieties
- Plant ~1300 trees/acre
- Select a rootstock that will fill the space in 2-3 years and that will have high cumulative yield
- Mechanize pruning, hand thinning and harvest
- Invest in technology that improve fruit quality (sunburn and color)
- There are still great opportunities growing apples.

Thank you for your attention.

Read our research results in the New York Fruit Quarterly

http://www.nyshs.org/fq.php