Precision Orchard Management: Research update

Dr. Brent Black
Utah State University

Overview

• Definitions and examples
• GIS-based applications
• Weather-based decision support tools

Precision management

• Components
 — Sensors and remote sensing
 — Precision positioning
 — Integrated communication
 — Geomapping
 — Auto-steering
 — Variable rate technology

Precision management

• Mapping components
 — Soil properties map
 — Grid soil testing (nutrients)
 — Yield history
 — Pest distribution
• Variable management
 — Variety
 — Seeding rate
 — Fertilizer rate
 — Pesticide rate
Orchard examples

- TRAPs app

Precision Crop Load Management

- Determine target crop load
 - Bushels per acre to maximize “crop value” (target size class)
 - Fruit # per acre → Fruit # per tree → Fruit # per branch
- Precision pruning
 - Determine flower buds per tree (5 trees per block)
 - Factor this into pruning strategies to reduce flower buds
- Precise thinning program
 - Fruit Growth Model
 - Carbohydrate Thinning Model
 - “Window” hand thinning

Applications for Utah

- Appropriate for tart cherry?
- Research locations
 - Three farms
 - Two orchard blocks per farm
 - Orchard blocks differ in soil uniformity (based on NRCS maps)

Orchard examples

- TRAPs app features
- Precision crop load management
- Variable rate management
 - Fertilizer
 - Based on what?
 - Soil variability
 - Yield history?
Mapping parameters - Soil

• Soil properties
 – Electromagnetic probe
 • Texture
 • pH
 • Salinity

Mapping parameters - Canopy

• Aerial imaging
• Light interception mapping
 – Light sensors 5-cm spacing
 – GPS and data logger
Mapping parameters - Canopy
• Aerial imaging
• Light interception mapping

Mapping parameters - Yield
• Yield variability
• Technology?
• Mapping Parameters:
 - Canopy
 - Soil
 - Yield

• Next steps?
 - Correlations among these and yield, tree health
 - Changes in leaf area over time?

• Leaf area changes
 - Proportional to water needs

• Improved crop coefficients
 \[\text{ET}_{\text{crop}} = \text{ET}_{\text{ref}} \times K_{\text{crop}} \]
• Variable rate management
 – Fertility
 – Irrigation
 – Pruning

• Pruning
 – Canopy density threshold
 • Fruit color
 • Powdery mildew

Overview
• Definitions and examples
• GIS-based applications for tart cherry
• Weather-based decision support tools

Weather Based Decision Support
• TRAPs app
 – 10 Insect pests
 – 1 disease
• Crop growth models
Apple Carbohydrate Model

• Carbon balance affects thinning response
• Surplus = difficult to thin
• Deficit = easy to thin

Pollen Tube Growth Model

• Predicts time to pollination
• Used to time bloom thinners

Improved ET estimates

$$ET_{crop} = ET_{ref} \times K_{crop}$$

• Orchard-specific $$ET_{ref}$$ calculations
• Projected ET from weather forecasts

Crop Phenology

• Growing Degree Days (GDD) from 1-Jan to crop growth stages – apple (by cultivar: Cripps Pink, Gala, Red Delicious)

• GDD to bloom for peach and cherry
Fruit Growth Model - Apple
• Uses GDD, fruit measurements and date to estimate harvest fruit size distribution. (Cripps Pink, Gala, Red Delicious)

Honey Bee Foraging Activity
• Bee activity based on weather
 – (rain, wind, temperature, sunlight)
• Past three days,
• Forecast of next three days
• Limiting factor

Peach fruit development
• California model
 – GDH for first 30 days after bloom
 – Predicts fruit size potential
 – Used to determine thinning timing and severity

Weather-based tools
UDAF Specialty Crop grant (2019-2021)
• Integrate new heat unit models into Climate Center Website
• Validate these models under Utah Conditions
• Refine/Improve the models where appropriate
• Integrate validated models into Utah TRAPs app.
Which weather-based tools

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Improved ET estimate and forecasts</td>
</tr>
<tr>
<td></td>
<td>Chill unit accumulation</td>
</tr>
<tr>
<td></td>
<td>Bee activity</td>
</tr>
<tr>
<td>Apple</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pollen tube growth (bloom thinning)</td>
</tr>
<tr>
<td></td>
<td>Carbohydrate model (thinning)</td>
</tr>
<tr>
<td></td>
<td>Bloom date</td>
</tr>
<tr>
<td></td>
<td>Fruit growth (estimate final size)</td>
</tr>
<tr>
<td>Peach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom date</td>
</tr>
<tr>
<td></td>
<td>Fruit development (thinning severity)</td>
</tr>
<tr>
<td>Cherry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom date</td>
</tr>
</tbody>
</table>

- Priority: High, Medium, Low, No Interest