Legumes as Orchard Floor Management in Peach

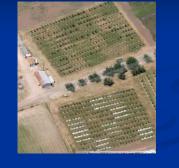
Jennifer Reeve; Brent Black, Diane Alston, Corey Ransom, Mae Culumber, Andrew Tebeau, Thor Lindstrom and Andrew Swain

UtahState

Challenges Facing Agriculture in Utah and the Intermountain West

- Short growing season
- Cold winters and hot summers
- Arid environment
- Shallow alkaline soils
- Prime fruit growing area
- Under pressure from rapid urbanization

Orchard Treatments


Peach orchards planted 2008 and 2009

Organic orchard <u>In-row</u> <u>Alley</u> Straw mulch Grass Straw mulch Legume Living mulch Grass Living mulch Legume Tillage Grass Weed Fabric Grass

Organic and Integrated Peach Orchard Trial in Kaysville Utah

Overall Goals

- Determine extent to which orchard grown legumes can replace the need for external sources of fertilizer and improve soil health.
- 2) Develop organic production practices suited to fruit growing conditions of Intermountain West.

Orchard Management 2008-2010

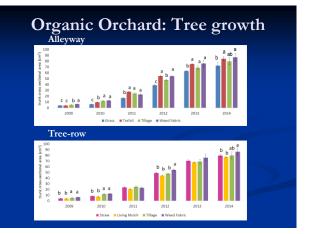
- Varieties: Starfire and Coralstar on Lovell rootstock
- Spacing: 8 x 16ft
- Chicken and paunch manure compost: 0.6, 0.9 and 1.12 oz total N tree
- Trace elements: Albion Zinc (Zn), multimineral, manganese (Mn), iron (Fe), calcium (Ca), magnesium (Mg)
- Disintegrating sulfur applied in 2010 to soil 0.42lb / tree

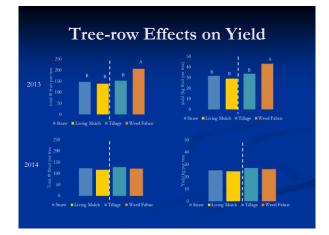
Orchard Management: 2011-2014

- Compost applied to meet P needs only ~ 8lb per tree wet weight
- Feather meal applied differently per treatment
- Total N applied 0.3-0.5 lb N per tree.
- Legume biomass 0.25 lb N per tree

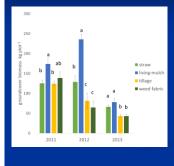
Organic Pesticide Applications

- Nordox 75WG, coryneum, spring and fall
- Stylet Oil, coryneum, spring and fall
- Dipel Pro, peach twig borer, 1-2 apps. per gen.
- M-Pede 1% solution, green peach aphids


Orchard Irrigation


Suspended irrigation lines installed 2012

Micro-sprinklers 360°, 19.8 gph (12) 180°, 10.5 gph (6)


Water applied based on soil moisture drawdown at the plot level.

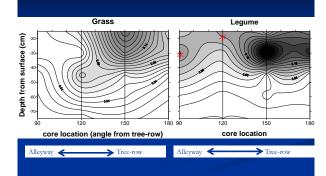
<figure>

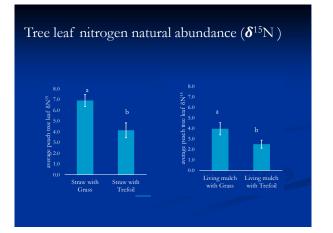
In Row Weed/Living Mulch Biomass

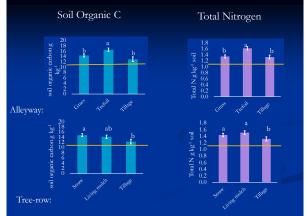
No relationship between biomass, straw mulch, legumes in alleyway and water use.

Water use was associated with tree size.

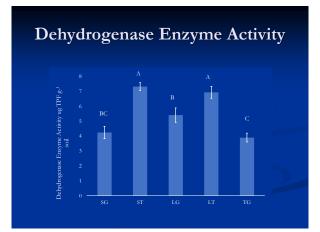
Organic Orchard: Tree Root Distribution

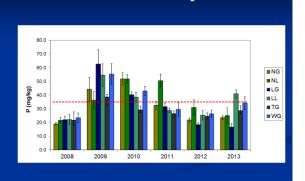


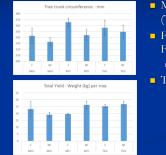

•4 cores per plot


•0-60 cm depth

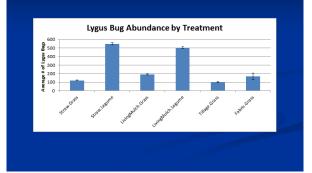
•Roots sorted in 10 cm sections -dry wt. cm3 -root length density

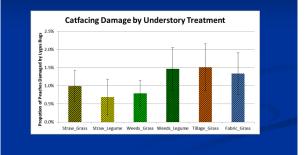


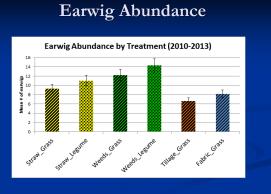


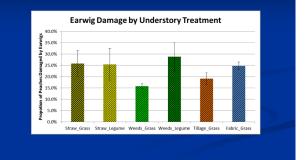


Available Soil Phosphorus

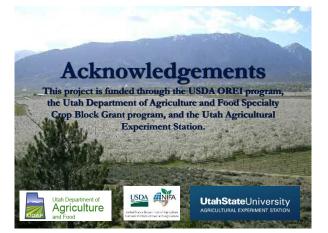

New Orchard Treatments Applied in 2016

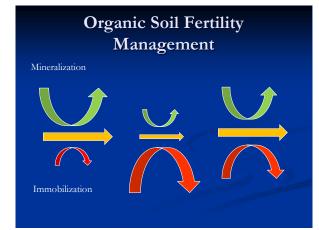

Mowing (M) vs Tillage (T)


- Fertilized (F) vs non Fertilized (NF)
- 2.5lb Feathermeal 13-0-0
- Trefoil (Tr) vs Grass (G)


Lygus Bug Abundance

Catfacing Damage

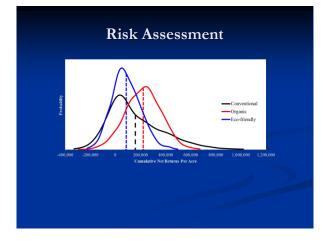




Fruit Damage by Earwig

Conclusions

- Organic tree growth (tillage, weed fabric and legume alleyway) equivalent to conventional
- Legumes in alley way overcomes weed competition and reduces cost of inputs
- Major pest is earwig not lygus bug
- Impact of legumes on lygus bug but not earwig
- Yields variable due to frost problems



Risk Assessment

Stochastic simulation run 1000 times

• Cumulative net returns per acre

	Organic	Eco-Friendly	Conventional
Min	-\$294,214	-\$224,985	-\$329,108
Mean	\$221,560	\$85,719	\$158,224
Max	\$672,679	\$113,281	\$1,018,937
Std Dev	\$141,120	\$113,281	\$216,653
CV	64	132	137

