NUTRIENT

CONSIDERATIONS IN TART CHERRY

Grant Cardon - USU Soils Specialist Brent Black - USU Fruit Specialist Graduate Students -
Sean Rowley (2010-12); Emily Tsai (2013-2015); Cole Harding (2019-Present)

EXTENSION舜

UtahStateUniversity

OBJECTIVES

-Review past research
-Point out some key findings relevant to nutrient management

- Establish reasons for current research projects
- Seek input on future work

RESEARCH REVIEW:

GET IN THE "WAY BACK" MACHINE!

SEAN ROWLEY'S WORK (2010-2012)

Table 2.1 Sites A and B descriptions

	Site A	Site B
Rowley (2013) Site	C	E
Location	Santaquin	West Payson
Date Planted	1997	1997
Cherry Variety	Montmorency	Montmorency
Rootstock	Mahaleb	Mahaleb
Adopted Management Practices?	Y	N
Experimental Design*	RBD**	RBD**
Replications	4	4
Trees per plot	16	10
Treatment:		
Year of Application	2011	2011
Control	X	X
$0.45 \mathrm{~kg} \mathrm{0-16-0}$	X	X
$0.45 \mathrm{~kg} \mathrm{0-0-16}$	X	X
$0.23 \mathrm{~kg} \mathrm{0-16-16}$	X	X
$0.45 \mathrm{~kg} \mathrm{0-16-16}$	X	X
$0.91 \mathrm{~kg} \mathrm{0-16-16}$	X	X
$0.45 \mathrm{~kg} \mathrm{0-16-16} \mathrm{(2X)}$	X	X
$0.91 \mathrm{~kg} \mathrm{0-16-16} \mathrm{(2X)}$	X	X
Timing of Sampling:		
Year of Sampling	2013	2014
May	X	X
June	X	X
July	X	X
New Growth	X	X
Yield	2011 \& 2013	2011 \& 2014

*RBD $=$ randomized block design
**Blocked by tree uniformity

EMILY TSAI'S
 STUDY:(2013-2014)

FOLLOW ON SAMPLING OF SEAN'S PERIODICALLY FERTILIZED ORCHARD BLOCKS TO SEE MULTI-YEAR CARRY

Table 1.1 Standard Sufficiency Ranges for Foliar Nutrient Content in Tart Cherry and Peach (Ranges modified from Rowley, 2013; Bryson et al, 2014; Walker et al., 1989)

Sufficient Foliar Nutrient Content					
Tree Fruit	Macronutrients $\%$			Micronutrients ppm	
	P	K	Ca	Fe	Zn
	$0.13-0.24$	$1.5-3.0$	$1.0-2.7$	$50-800$	$15-125$
Peach	$0.14-0.4$	$1.0-3.0$	$0.8-2.6$	$50-200$	$18-80$

EVALUATE THE EFFICACY OF NUTRIENT SUFFICIENCY RANGES USED IN UTAH

DETERMINE THE TIMING OF NUTRIENT STATUS SAMPLING THAT BEST REFLECTS PRE-HARVEST NUTRIENT SUFFICIENCY

Table 1.2 Sufficient Annual Vegetative Growth Ranges in Tart Cherry and Peach (Adapted from Rowley, 2013)

Sufficient Annual Vegetative Growth			
Tree Fruit	Young	Mature	
		cm	
Tart Cherry	$25-51$	$20-38$	
Peach	$25-61$	$20-38$	

EMILY'S RESULTS:

Treatment

EMILY'S RESULTS:

EMILY'S RESULTS:

Table 2.3 Qualitative Prediction of Pre-harvest Sufficiency Status in Tart Cherry

Tree Fruit	Site	Year	Nutrient	Bloom vs. Pre-harvest	Mid-season vs. Pre-harvest
Tart Cherry	A	2013	P	+	+
			K	-	+
			Ca	+	+
			Fe	-	+
			Zn	-	-
	B	2014	P	-	-
			K	-	+
			Ca	+	+
			Fe	-	+
			Zn	-	+

COLE HARDING'S STUDY:

- Given the impact of nutrient deficit on long-term orchard productivity (Sean's work)
- Given that averaging yield and evaluating annual dosing effect on growth and yield does not seem to reveal differential response (Sean and Emily's work)
- Given that we see large spatial variability on some orchard blocks (Cole's preliminary results)
- Then we are concerned that overall productivity may be impacted negatively if significant areas of orchards experience regular nutrient deficits (reduced yield and longevity of trees)

TAKE HOME MESSAGES:

- Incentive for annual fertilizer application
- Sufficiency ranges for nutrients used by USU are valid (reliably reflect Utah growing conditions)
- Mid-season tissue sampling great predictor of nutrient sufficiency near harvest
- Potassium and Iron regularly show deficits in tissue samples (are we leaving yield on the table?)
- Excited to look more deeply into variable rate application and management of fertility

SPECIAL THANKS

- Cooperator Growers (Southridge, Cherry Hills, Orchardview, Farleys, Rileys, Allreds, McMullins, Ercanbracks)
- Bailey Shaffer - Research Technician
- UDAF Fertilizer Checkoff Grant
- USDA-Specialty Crop Block Grant
- USDA Western S.A.R.E. Grant
- UAES Operations/Facilities Funding

