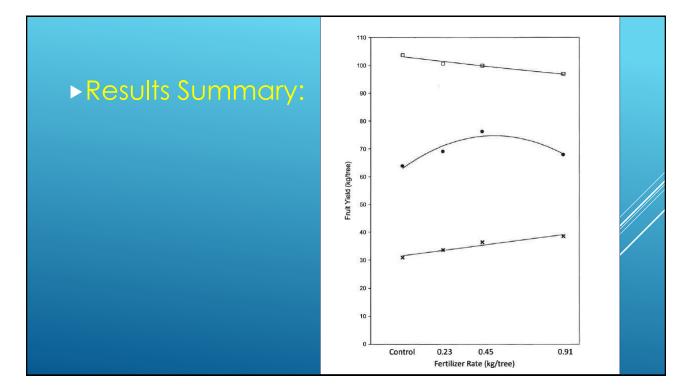
NUTRIENT CONSIDERATIONS IN TART CHERRY

Grant Cardon – USU Soils Specialist Brent Black – USU Fruit Specialist Graduate Students – Sean Rowley (2010-12); Emily Tsai (2013-2015); Cole Harding (2019-Present)

EXTENSION **%** UtahStateUniversity

OBJECTIVES

- Review past research
- Point out some key findings relevant to nutrient management
- Establish reasons for current research projects
- Seek input on future work


RESEARCH REVIEW:

GET IN THE "WAY BACK" MACHINE!

SEAN ROWLEY'S WORK (2010-2012)

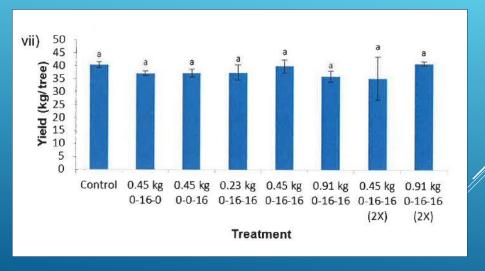
	Site A	Site B	
Rowley (2013) Site	С	E	
Location	Santaquin	West Payson	
Date Planted	1997	1997	
Cherry Variety	Montmorency	Montmorency	
Rootstock	Mahaleb	Mahaleb	
Adopted Management Practices?	Y	N	
Experimental Design*	RBD**	RBD**	
Replications	< 4	4	
Trees per plot	16	10	
Treatment:			
Year of Application	2011	2011	
Control	X	Х	
0.45 kg 0-16-0	X	Х	
0.45 kg 0-0-16	X	Х	
0.23 kg 0-16-16	X	Х	
0.45 kg 0-16-16	X	X	
0.91 kg 0-16-16	X	Х	
0.45 kg 0-16-16 (2X)	X	Х	
0.91 kg 0-16-16 (2X)	X	Х	
Timing of Sampling:			
Year of Sampling	2013	2014	
May	X	Х	
June	X	Х	
July	X	Х	
New Growth	X	Х	
Yield	2011 & 2013	2011 & 2014	

**Blocked by tree uniformity

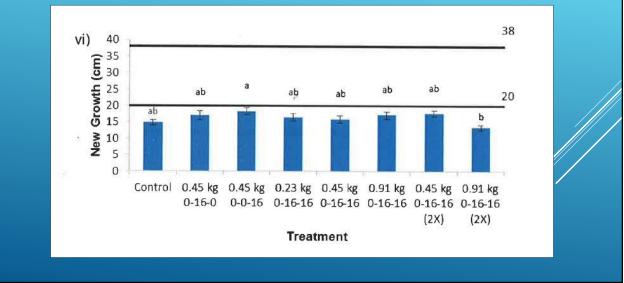
EMILY TSAI'S STUDY:(2013-2014)

FOLLOW ON SAMPLING OF SEAN'S PERIODICALLY FERTILIZED ORCHARD BLOCKS TO SEE MULTI-YEAR CARRY OVER (WAS THERE A RESIDUAL EFFECT OF VARIABLE P AND K APPLICATION)

EVALUATE THE EFFICACY OF NUTRIENT SUFFICIENCY RANGES USED IN UTAH


DETERMINE THE TIMING OF NUTRIENT STATUS SAMPLING THAT BEST REFLECTS PRE-HARVEST NUTRIENT SUFFICIENCY Table 1.1 Standard Sufficiency Ranges for Foliar Nutrient Content in Tart Cherry and Peach (Ranges modified from Rowley, 2013; Bryson et al, 2014; Walker et al., 1989)

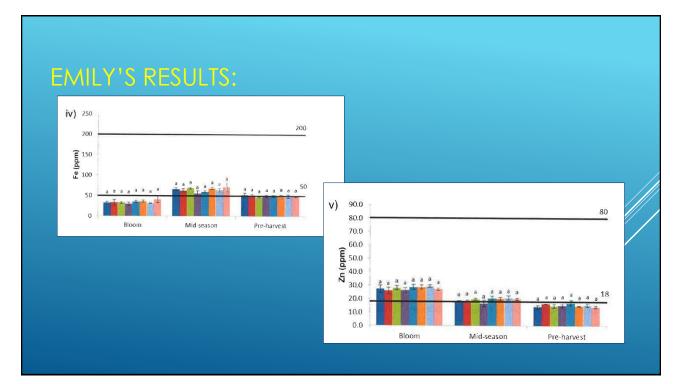
Tree Fruit	Macronutrients %		Micronutrients		
Ī	P	к	Ca	Fe	Zn
Tart Cherry	0.13-0.24	1.5-3.0	1.0-2.7	50-800	15-125
Peach	0.14-0.4	1.0-3.0	0.8-2.6	50-200	18-80


Table 1.2 Sufficient Annual Vegetative Growth Ranges in Tart Cherry and Peach (Adapted from Rowley, 2013)

	Sufficient Annual Vegetat	ive Growth
Tana Emili	Young	Mature
Tree Fruit	cm	
Tart Cherry	25-51	20-38
Peach	25-61	20-38

EMILY'S RESULTS:

EMILY'S RESULTS:



EMILY'S RESULTS: 0.450 i) 0.4 0.400 0.350 Control ■ 0.45 kg 0-16-0 0.300 = 0.45 kg 0-0-16 S^{0.250} ■ 0.23 kg 0-16-16 **a** 0.200 0.14 0.45 kg 0-16-16 а = 0.91 kg 0-16-16 0.150 💷 0.45 kg 0-16-16 (2X) 0.100 0.91 kg 0-16-16 (2X) 0.050 0.000 Bloom Mid-season Pre-harvest

4

EMILY'S RESULTS: ii) 3.500 3 3.000 2.500 §^{2.000} ¥ 1.500 аааааа a 1 a a а a a a а a 8 a 9 a a 1.000 0.500 0.000 Bloom Mid-season Pre-harvest

EXILY'S RESULTS:

EMILY'S RESULTS:

Table 2.3 Qualitative Prediction of Pre-harvest Sufficiency Status in Tart Cherry

Tree Fruit	Site	Year	Nutrient	Bloom vs. Pre-harvest	Mid-season vs. Pre-harvest
A 20			P	+	+
		К	-	+	
	2013	Ca	+	+	
		Fe	-	+	
		Zn		-	
Tare cherry	It cherry		Р		
в		К		+	
	2014	Ca	+	+	
		Fe	15	+	
			Zn	0 - 1	+

COLE HARDING'S STUDY:

- Given the impact of nutrient deficit on long-term orchard productivity (Sean's work)
- Given that averaging yield and evaluating annual dosing effect on growth and yield does not seem to reveal differential response (Sean and Emily's work)
- Given that we see large spatial variability on some orchard blocks (Cole's preliminary results)
- Then we are concerned that overall productivity may be impacted negatively if significant areas of orchards experience regular nutrient deficits (reduced yield and longevity of trees)

TAKE HOME MESSAGES:

- Incentive for annual fertilizer application
- Sufficiency ranges for nutrients used by USU are valid (reliably reflect Utah growing conditions)
- Mid-season tissue sampling great predictor of nutrient sufficiency near harvest
- Potassium and Iron regularly show deficits in tissue samples (are we leaving yield on the table?)
- Excited to look more deeply into variable rate application and management of fertility

SPECIAL THANKS

- Cooperator Growers (Southridge, Cherry Hills, Orchardview, Farleys, Rileys, Allreds, McMullins, Ercanbracks)
- Bailey Shaffer Research Technician
- UDAF Fertilizer Checkoff Grant
- USDA-Specialty Crop Block Grant
- ► USDA Western S.A.R.E. Grant
- UAES Operations/Facilities Funding