IPM For Greenhouse and Nursery Crops

Marion Murray Utah State University Extension

Utah Green Conference 2010

Topics

Integrated Pest Management Techniques

Insect Pests

- Aphids
- Fungus gnats
- Whiteflies
- Thrips
- Spider mites
- Borers

Diseases

- Root rots
- Botrytis

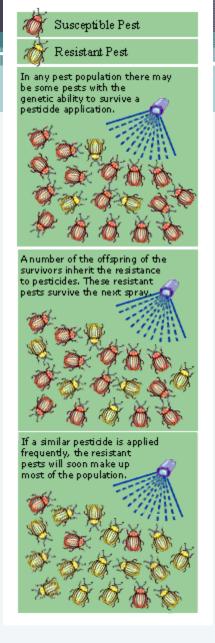
On-line Resources

Why use IPM?

Resurgence

 pesticides may kill natural enemies, leading to increase in population

Secondary pest outbreak


- some pesticides promote pest activity:
 - carbaryl is known to increase spider mite reproduction
 - trees treated with imidacloprid (Marathon) have been shown to have greater mite problems
 - pyrethroids used early in the season also kill predatory mites, leading to mite outbreaks later on

Residues from contact pesticides

Resistance

- whiteflies
- thrips

- Availability
 - possible removal/label change of many pesticides, for example acephate, chlorpyrifos
- Costs
- Public Pressure

IPM Definition

"IPM is a <u>sustainable approach</u> to managing pests by <u>combining</u> biological, cultural, physical and chemical tools in a way that <u>minimizes</u> economic, health, and environmental <u>risks</u>."

Components of an IPM Program

- Knowledge of pest biology and behavior as well as knowledge of host plant
- Scout for insect or disease occurrence

Why Scout?

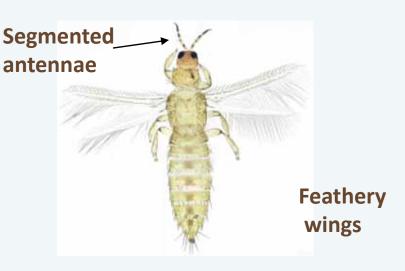
HELP MAKE PEST MANAGEMENT DECISIONS

- provides early warning of potential pest problems
- help time control measures properly
- provides immediate feedback about whether pest control activities are working
- historical data measures effectiveness of management

Scouting: Sticky Traps

Placement

- At least 1 card per 1,000 sq ft
- Check and replace weekly & after a treatment
- 1-2 inches above plant canopy, near favored hosts
- Reduce number if releasing winged beneficial insects
- Eliminate blue traps if using bumble bees for pollination

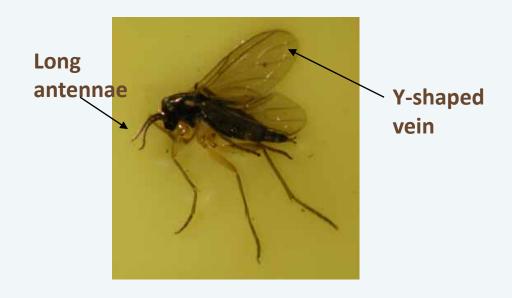

Identifying Insects on Sticky Traps

Aphids

Legs & antennae long and thin

Thrips

Long slender body


Identifying Insects on Sticky Traps

Whiteflies

White wax dissolves in adhesive; orange underneath

Fungus gnats

Small, dark, mosquitolike flies with gray wings

Scouting: Trap Crops

Trap Crops/Indicator plants

- Susceptible varieties provide an early detection system
- Petunia varieties thrips; not a reservoir for viruses

Cucumbers – whiteflies;
 concentrate release of parasitic
 wasps on cucumbers

Indicator plant for thrips: 'Carpet Blue' Petunia

Scouting: When and Where

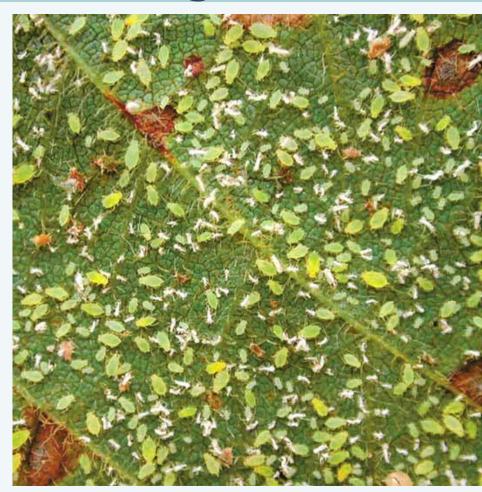
Walk a section of your greenhouse/nursery once per week (3 hours/acre)

Scout least-infested first, heavily infested areas last

Flag pest hotspots for extra treatment (biocontrol release, pesticide)

Keep records of results

Unsure?


Send samples to your county Extension office, or to the Utah Plant Pest Diagnostic Lab (UPPDL) in Logan:

utahpests.usu.edu/uppdl

Components of an IPM Program

- Knowledge of pest biology and behavior as well as knowledge of host plant
- Scout for insect or disease occurrence
- Knowing at what level control measures are needed (thresholds)

Pest Thresholds

Economic

 Pest density when economic losses are reached (point when value of crop loss exceed cost of treating)

 Pest density that causes unacceptable visual injury

Thrips injury to leaves & flower petals

Components of an IPM Program

- Knowledge of pest biology and behavior as well as knowledge of host plant
- Monitoring for insect or disease occurrence
- Knowing at what level control measures are needed
- Using an integrated approach to pest management/prevention

Integrated Control: Exclusion

Clean transplants

Inspect incoming plants & materials

Keep doors closed

Screen openings

Doors, ventilation openings

Barren/Clean floor surfaces

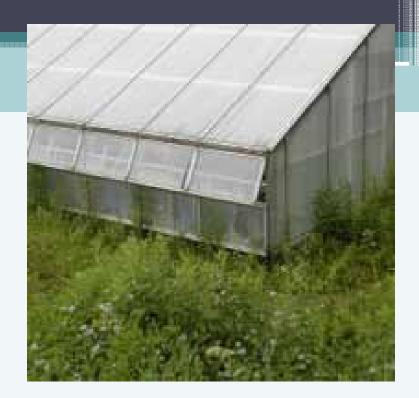
Concrete, black plastic, weed barrier

Limit access

People, "pet plants", nonessential materials

Integrated Control: Cultural Options

- Maintain healthy, resistant plants
- Choose resistant species and cultivars when available
- Greenhouse environment
 - Temperature, light/dark cycles, humidity


Integrated Control: Sanitation

Weed management

 Weed-free inside and zone around outside perimeter

Post-harvest clean up

- Pressure-wash, disinfect
- Sterilize soil/growth media
- □ Increase temperature to >80°F
- Remove and destroy all plant materials including weeds
- Eliminate standing water & algae (food, shelter)
- Place sticky traps to monitor pests before moving in new plants

Integrated Control: Biocontrol

- Periodic augmentation with predators and parasites
- Most successful when pest densities are LOW
- Must not use broad-spectrum pesticides (pyrethroids, organophosphates-Orthene)

Examples of Pest Predators

Aphids	Hippodamia convergens lady beetle	Orius sp. minute pirate bug	Chrysoperla sp. lacewing larvae	Predatory thrips
Soft Scales	Rhyzobius lophanthae lady beetle	Chilocorus orbus lady beetle		Predatory thrips
Whiteflies	Encarsia formosa parasitoid	Eretmocerus californicus parasitoid	Chrysoperla sp. lacewing larvae	Predatory thrips
Thrips	Hypoaspis miles predatory mite	Orius sp. minute pirate bug	Chrysoperla sp. lacewing larvae	Predatory thrips
Fungus gnats	Hypoaspis miles predatory mite	Parasitic nematodes		
Spider mites	Phytoseiulus persimilis predatory mite	Orius sp. minute pirate bug	Chrysoperla sp. lacewing larvae	Predatory thrips

Greenhouse/Nursery INSECTS

Aphids

- Most common: green peach aphid and melon aphid
- Cornicles

Aphid Biology

- Many generations per summer
- Give birth to live young starting in spring
- Produce wings for dispersal when overcrowded
- Populations increase rapidly, low numbers can be tolerated

Aphid Damage

- Suck sap from phloem tubes in leaves and stems
- Curl leaves, produce sticky honeydew that promotes growth of black sooty mold, reduce plant vigor at high densities
- Transmit viruses
 - green peach aphid: 100 viruses
 - melon aphid: 44 viruses

Aphid Management

Biological Control – many commercially available

- lady beetles
- lacewings
- parasitic wasps
- syrphid flies

Aphid Management

- Monitoring and Thresholds
 - check under leaves (melon aphids)
 - new growing points (green peach aphid)

Aphid Management

Delayed Dormant Spray (nurseries):

Dormant oil + Pyrethroid (at bud break)

Spring and Summer control:

- reduced risk:
 - hard spray of water
 - horticultural oil
 - insecticidal soap
 - Pyrellin (pyrethrin+rotenone)
 - azadirachtin (Azatin, Ornatin)
 - pyrometrozine (Endeavor)
- Conventional:
 - imidacloprid (Marathon)
 - Orthene
 - pyrethroids

Fungus Gnats

Bradysia and Orfelia species

Fungus Gnats

 Females survive for 1 week; lay up to 200 eggs on soil

 Larvae feed on fine root hairs

Egg → adult
 in 15-30 days

Fungus Gnat Damage

- Larvae eat fine roots
- Plant wilting or poor vigor
- Adults spread viruses

Fungus Gnat Management

Monitor

- sticky cards
- potato slices

Fungus Gnat Management

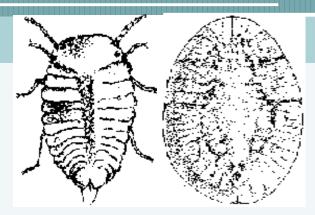
Nematodes – *Steinernema feltiae* Predatory mite – *Hypoaspis miles*

Fungus Gnat Management

- Avoid overwatering
- Eliminate algae within greenhouse
- Eliminate free-standing water
- Sprays
 - Bacillus thuringiensis subsp. israelensis
 - dozens of other products (pyrethroids, insect growth regulators, etc.)

Soft Scales

- Soft scales feed in phloem, produce sticky honeydew
- Armored scales feed on mesophyll of plant cells, do not produce honeydew
- Multiple years of scale feeding can kill limbs; cause dieback


European fruit lecanium scale

San Jose scale & injury

Soft Scale Biology

- Typically found on woody plants
- Adult female lays eggs under body
- Hatch as nymphs, called crawlers
- Once settled, immobile
- Many generations per season

Soft Scale Management

Biological control

 The lady beetle Rhyzobius lophanthae attacks brown soft scale and black scale.

Soft Scale Management

- Prune away infested plant parts
- Use sprays when crawlers are active
 - Reduced risk:
 - oil
 - soap
 - insect growth regulator (Distance, Enstar, azadirachtin)
 - Conventional:
 - neonicotinoid (Marathon)
 - acephate

Armored Scales

Whiteflies

Silverleaf whitefly

- Bemisia argentifolii
- Poinsettias, ornamentals

Greenhouse whitefly

- Trialeurodes vaporariorum
- Vegetables, ornamentals

Silverleaf whitefly holds wings close to body, roof-like

Greenhouse whitefly holds wings flat, horizontally

Whitefly Biology

20-30 day life cycle

- 1st instar nymph crawler
- 2nd & 3rd instar nymphs –
 feeding stages; immobile
- 4th instar doesn't feed

- pupa
- adult

Whitefly Damage

- Piercing-sucking mouthparts
- Stippling on leaves
- Secrete honeydew; sooty mold
- Stunt plants, may cause physiological disorders
- Leaves turn yellow, dry, drop from plant
- Transmit viruses (25+)

Whitefly Scouting

- Monitor to detect presence yellow sticky cards
- Trap threshold = ½ per card per day when crop is young, 2 per card per day when crop approaches maturity
- Inspect plants hand lens
- Leaf threshold = 10 nymphs per leaf

Whitefly Management

Biological control

Parasitic wasps

Encarsia formosa for greenhouse whitefly Eretmocerus eremicus for silverleaf whitefly

Predators – *Delphastus* ladybeetle, lacewing

Whitefly Management: Encarsia Biocontrol

- Commercially available; parasitizes whitefly early nymphal stages
- 10 nymphs per leaf will sustain wasp
- 2 schemes for use:
 - Release once/week at rate of 2-5 per plant for 8-10 weeks during growing season
 - Place cucumber plants at ends of rows to attract whiteflies; target cucumbers for wasp release
- Cannot use broad spectrum insecticides

Each tiny parasite will kill up to 200 whitefly per week. The parasitic wasp develops inside the whitefly scale and emerges after 20 days to seek out more whitefly. Each 3 strips, consisting of 5 cards each, contain parasitized whitefly scale with more than 1,000 Encarsia.

Directions: Release Encarsia at the first sign of whitefly infestation. For greenhouse tomatoes and peppers, use 1 card per 4 plants weekly for 8-10 weeks. For cucumbers, use 1 per 2 plants also for 8-10 weeks. For poinsettias, use 2 per plant weekly for 8-12 weeks. Store in a cool dry place.

www.arbico-organics.com

BIGTRIP MY24 3816761L

Whitefly Insecticides

Suffocants, cuticle disruptants:

- insecticidal soap
- horticultural mineral oil

IGR-insect growth regulator

- kinoprene (Enstar)
- fenoxycarb (Precision)
- pyriproxyfen (Distance)
- neem oil (Azatin)
- diflubenzuron (Adept)
- novaluron (Pedastal)

Neonicotinoids:

- imidacloprid (Marathon)
- acetamiprid (Tristar)
- thiamethoxam (Flagship)

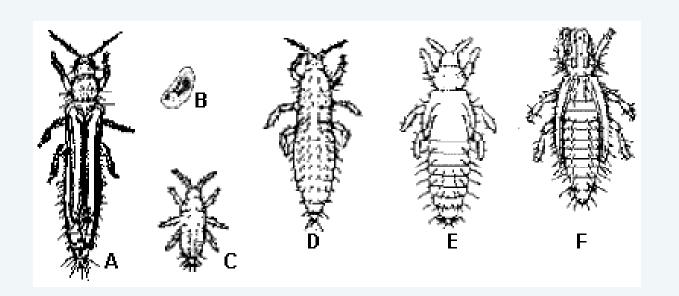
Pyrethroid:

- bifenthrin (Talstar)
- cyfluthrin (Decathlon, Tempo)
- fenpropathrin (Tame)
- lambda-cyhalothrin (Scimitar)

Organochlorine:

- endosulfan (Thiodan)
- pyridaben (Sanmite)

Miscellaneous:


- flonicamid (F1785 GH)
- pymetrozine (Endeavor)

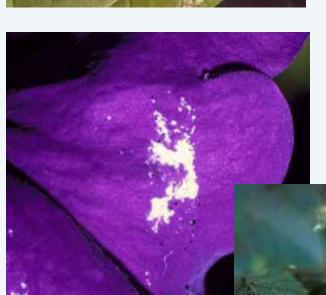
Thrips

Most common: western flower thrips (Frankliniella

occidentalis)

Females insert 150-300 eggs into leaves & buds

Western Flower Thrips Damage


Pierce cells and remove contents

tissue appears rasped, streaked, silvery

Vector of major viruses

- Impatiens necrotic ring spot
- Tomato spotted wilt

Thrips Scouting

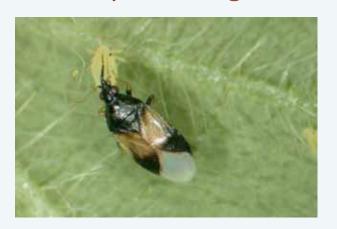
- Early detection is critical
- Blue sticky traps
 - 1 trap per 1,000 sq ft
 - Place just above canopy
- Inspect blossoms, buds, leaves
- Tap leaves & blossoms over dark sheet of paper
- Threshold:
 - 5-20 per trap in chrysanthemums
- Indicator plants place every 20-30 ft
 - 'Carpet Blue' and 'Blue Madness" Petunias

Thrips Management

- Difficult, insecticide resistance
- Biocontrol alone often is not enough
- Sanitation is key
 - Clean stock, no debris
 - Exclusion, screen vents
 - 20-ft vegetation-free
 zone around house

Thrips Management - Biocontrol

Predatory mite, Neoseiulus cucumeris



Predatory soil mite, Hypoaspis miles

Hypoaspis miles feed on thrips pupae in the soil

Minute pirate bug, Orius insidiosus

Minute pirate bug adult

Thrips Management

- Treat at 3-5 day intervals with very good coverage
- Rotate chemicals to prevent thrips resistance
 - Soap, Oil
 - Mesurol
 - Spinosad (Conserve)*
 - Avid
 - Pedestal (IGR)

Twospotted Spider Mite

Cultural Management of Mites

- Clean up with insecticidal soap, horticultural oil or miticide
- Prevent diapause of mite in the fall
 - Interrupt night with 2 hr light
 - Keeps mites active
- Remove crop & starve mites

Mite Biological Control

Predatory mite – *Phytoseiulus* spp.

Mite Biological Control

- Phytoseiulus sold in tubes of 1,000 2,000 in vermiculite or corn cob grits
- Light infestation: 10 predator mites per spider mite-infested leaf
- Heavy infestation: 10-100 mites per leaf

No toxic pesticides

Mite Biological Control

Spider Mite Management

Soft Controls:

- pressurized stream of water
- horticultural oil
- insecticidal soap

Miticides:

- Acequinocyl (Shuttle)
- Bifenazate (Floramite)
- Pyridazinone (Nexter, Sanmite)
- Chlorfenapyr (Pylon)
- Etoxazole (Tetrasan)
- Hexythiazox (Ovation, Hexagon)

Tree and Shrub Insect Borers

Attack trunks & limbs:

- Flatheaded beetles
- Roundheaded beetles

Flatheaded Borers (Buprestidae)

Flatheaded Borers (Buprestidae)

Flatheaded Borers (Buprestidae)

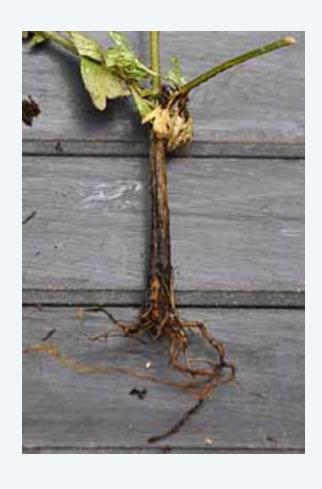
Adult flight periods for northern Utah

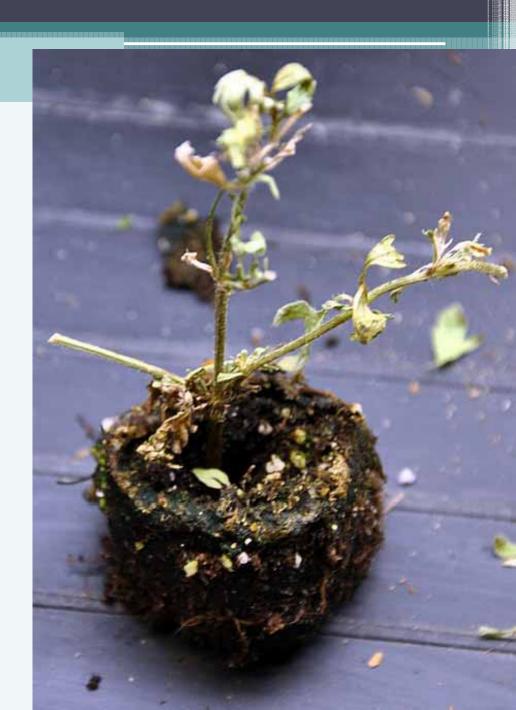
- Pacific flatheaded borer: early May early July
- Flatheaded appletree borer: late May July
- Bronze birch borer: late May June
- Aspen borer: May-July
- Poplar-and-Willow borer: July Sept.
- Locust borer: August Sept.
- Shothole borer: June and late Sept.

Greenhouse/Nursery DISEASES

Root-rots

- Fusarium species
- Pythium species
- Thielaviopsis basicola (black root rot)
- crop loss can be high
- difficult to control
 - proper diagnosis before implementing fungicide controls





Black root rot

Root Rot Management

Sanitation

Optimal watering

Minimize stress

Chemical control

Pythium, Fusarium (often preventive)

- Quell
- Previcure Flex (vegetable)
- Mycostop (Streptomyces sp.; beneficial bacterium)

Black root rot (preventive, curative)

- Cleary's 3336
- Terragard

Botrytis (Gray Mold)

Botrytis (Gray Mold)

- leaf spots
- damping off
- bud rot
- blight

- Thrives in high humidity, tightly packed plants
- Survives on living or dead plant tissue
- Spreads quickly in air currents

Botrytis Management

Sanitation

destroy infected plant material

Manipulate greenhouse environment

- keep RH below 85%
- maintain good air circulation and plant spacing

Fungicides

- Kocide 101, (copper)
- Cleary's 3336
- Domain (thiophanate-methyl)
- Phyton-27
- Chipco (iprodione)
- Exotherm Termil
- Daconil 2787 (chlorothalonil

Resistance Management

Learn about classification of pesticides at:

Insecticide Resistance Action Committee: irac-online.org

Fungicide Resistance Action Committee: frac.info

Rotate chemical classes/modes of action within generations between generations within a season

utahpests.usu.edu

UtahState UNIVERSITY extension

ext home | site map

home

utah pests news quarterly newsletter

fact sheets

frequently asked questions

photo gallery

slideshows

contact us

WEBSITES

utah pests homepage integrated pest management plant diseases insects and their relatives utah plant pest diagnostic lab

Utah's diverse landscape supports thousands of insects and plant pathogens. UTAH PESTS is your portal for learning more about pests and their beneficial counterparts around the state, and how Utah Extension personnel are working to provide a greater understanding of these organisms in our world.

Click on one of the web site links below to get started!

integrated pest management

Choose this site for the plant pest advisories, the IPM Mini-Grant program, weather data, and much more.

insects and their relatives

This site will help to shed some light on the insect world, with fact sheets, images, slide shows, and more.

plant diseases

Choose this site for a multitude of fact sheets on diseases and disorders of field crops, fruits, ornamentals, turf, and vegetables.

utah plant pest diagnostic lab

The UPPDL, the only lab of its kind in Utah, is here to identify and provide management recommendations for your pest problems.

IPM Advisories:

Landscape
Tree Fruit
Small Fruit/Vegetable
Turf

To sign up: utahpests.usu.edu/ipm

Landscape IPM Advisory

Weekly Pest Update for Woody Ornamentals, Utah State University Extension, September 4, 2008

What's In Bloom

Butterfly bush: bloom Clethra: end bloom Oakleaf hydrangea: end bloom Rose-of-Sharon: end bloom Shrub roses: end bloom Sourwood: end bloom Sweet Autumn clematis: end bloom Trumpet vine: end bloom Vitex: end bloom

Insect/Disease Information

DECIDUOUS TREES

Cankers on Red-Twig Dogwood

Cankers on stems of red-twig dogwood were observed in Salt Lake County, causing a slow dieback of a large clump. The cankers, possibly caused by the fungus Botryosphaeria, appear as longitudinal, brown to black sunken areas along the stems. When the bark is scraped away, the margins of the canker are evident.

The only way to manage cankers is to prune out the infected tissue about 6 inches below the lower margin. Thinning the plant and fall rejuvenation pruning will improve air circulation and encourage new growth for next spring.

Pear Slug

Pear slugs (also known as cherry slug) are the larvae of a sawfly that appear siliny and almost translucent. They feed on the upper surface of foliage of cherry, mountain-ash, apricot, hawthorn, cotoneaster, plum, and pear. The second generation of larvae are active now, and if they are in high numbers, can cause defoliation. But because this second generation damage is so late in the season, control is not always necessary. If necessary, Bt and spinosad are very effective.

Slime Flux

Slime flux is readily apparent on trees now, such as willow, elm, ash, cottonwood and locust. This condition occurs when a large population of naturally-occurring bacteria builds within a tree, causing gases to form. The resulting pressure creates a

marion.murray@usu.edu 435-797-0776

