Anarsia lineatella Peach Twig Borer

Twig Borer Life Cycle

Typical Fruit Damage

Trapping Results: 2003

- Total PTB: 4,863
- Average per trap: 413

 Duration: April-October
- Ave. *per block*: 608
 Boxelder County: 1,976
 - Utah County: 131

Site	Total PTB	Per-Trap	
Perry	3388	1694	
Willard	564	282	
Kaysville	256	128	
Payson	19	9.5	
Santaquin	60	30	
N. Santaquin	91	91	
Genola	83	41.5	
Lincoln Pt.	402	201	
Overall:	4863		
Average:	608	413	

2003 Shoot Strike Counts

Orchard Site	Mean Strikes/tree	Harvest Damage (%)
Payson Peaches	0.00	0.00
Lincoln Pt.	0.06	0.50
Nectarines		
Perry Peaches	2.30	26.80
Willard Peaches	0.01	0.00
Kaysville Peaches	0.04	0.12
Santaquin Peaches	0.00	0.00
Genola Peaches	0.00	0.00

Key Elements for Management

- Overwinters as a larva in hibernacula
- 3-4 generations/year
- First generation targets succulent shoots.
- 2nd and 3rd generations target fruit.

Degree-Days (DDs) for Each Stage

- Total required for a generation: **1,092.6** DDs
 - Pre-ovipositing Adult: **50.4**
 - Ovipositing Adult: **124.2**
 - Egg: **165.6**
 - Larva: **464.4**
 - Pupa: **288.0**

you

Translate DDs into Biology

- PTB larvae require **3-5** shoots to complete their development.
- *Residence time* per shoot:
 - 464 DDs / # shoots
 - between 155 and 93 DDs per shoot.
- Assuming warm temperatures (~22 DDs per day), the residence time is:
 - 4-7 days per shoot
 - larva will likely be "resurfacing" every 4-7 days.

2003 PTB Flight and DD Accumulations

Egg-hatch Relative to Date (based on DD model projections)

Strategies for 2004

- Accurate trapping is key to precision in management.
- Average DDs for first moth emergence in 2003:
 - 367 ± 53 DDs
 - get traps out ~ 250 DDs to ensure reliable biofix.
- 340-640 is likely peak egg-hatch window for 1st generation.
- First generation sprays may need to be initiated at 300-400 DD.

On the Horizon in 2004

- As more and more orchards are abandoned or neglected, beware of:
 - Greater Peachtree Borer
 - Giant CA Prionus Beetle
 - Shothole Borers

 For more information on tree borers, see recent talks by Dr. Alston at: <u>www.extension.usu.edu/SlideShowIndex.htm</u>

Tree Borer Management (courtesy Diane Alston, March 3rd, 2004)

- Timing is critical (northern Utah)
 - Ash/Lilac borer May 1- late June
 - Bronze birch borer late May June
 - Aspen borer May-July
 - Peachtree (Crown) borer late June August
 - Poplar-and-Willow borer July Sept.
 - Locust borer August Sept.
 - Shothole borer June and late Sept.
- Insecticides: carbaryl, endosulfan, pyrethroids (permethrin, bifenthrin)

Considerations for Codling Moth Management

Shawn A. Steffan Dept. Of Biology Utah State University

February 20th, 2004

General Pattern of Codling Moth Flight and Egg-hatch, Relative to Degree-Days

Codling Moth Degree-Days

- Degree-days give us an indirect measurement of an arthropod's development.
- *How* are DDs calculated?
 - Time spent within a specific temperature range.
 - For codling moth, the *upper threshold is:* **88**; the *lower is:* **50**).

Important Stages in a Codling Moth's Life

- Pre-ovip. Flight: **58** DDs
 - Eggs: **158** DDs
- Larval Feeding: 471 DDs
 - Pupae: **431** DDs
- Total for Generation: 1,118 DDs

D-D Accumulations at Each Generation's Egg-hatch:

> 220 DDs (1st egg-hatch)
> 1,120 DDs (2nd egg-hatch)
> 2,160 DDs (3nd egg-hatch)

UC Statewide IPM Project © 2000 Regents, University of California

For the past 3 years the model has accurately predicted codling moth development (flight, oviposition, and egg hatch) in Wenatchee in unsprayed orchards.

2002 actual activity and model predictions - 1st generation

Courtesy Dr. Jay Brunner, WSU, Wenatchee

Case Studies from '03 Season

- ✓ Case 1: No mating disruption; high CM pop; poorly timed apps; over-reliance on a single material; insecticide resistance documented.
- ✓ Case 2: No mating disruption; moderate CM pop; welltimed apps; use of IGR and conventional materials.
- ✓ Case 3: Mating disruption; moderate CM pop; many applications; use of various materials.
- Case 4: Mating disruption (applied 1 week late); high CM pop; well-timed applications; various materials.

Case Studies from '03 Season

- ✓ Case 1: No mating disruption; high CM pop; poorly timed apps; over-reliance on a single material; insecticide resistance documented.
- ✓ Case 2: No mating disruption; moderate CM pop; welltimed apps; use of IGR and conventional materials.
- ✓ Case 3: Mating disruption; moderate CM pop; many applications; use of various materials.
- Case 4: Mating disruption (applied 1 week late); high CM pop; well-timed applications; various materials.

Case 1: Codling Moth Flight and Degree-Day Accumulation for Apples in *Perry (Boxelder Co.)*

Case 2: Codling Moth Flight and Degree-Day Accumulation for Apples in *Kaysville (Davis Co.)*

Case 3: Codling Moth Flight and Degree-Day Accumulation for Apples in *Genola (Utah Co.)*

Case 4: Codling Moth Flight and Degree-Day Accumulation for Apples in *Lincoln Point (Utah Co.)*

CM Damage Estimates

- ✓ Case 1 (Perry): Not harvested due to CM damage (83% worm entry).
- ✓ Case 2 (Kaysville): Moderate CM damage (1.3% worm entry).
- ✓ Case 3 (Genola): Very low CM damage.
- ✓ Case 4 (Lincoln Pt.): High CM damage (approx. 20% worm entry).

Improve the Odds

- Time the cover sprays based • on known biological events (run traps).
- Achieve better coverage by using higher gallonages and verifying uniformity within the canopy.
- Sanitation (remove infested • apples from orchard).
- **Rotate insecticide classes** (implications for spray timing).
- **Use Pheromone mating** • **disruption** to *reduce the egg* load.

tending

Mating Disruption Works

- Here's how:
 - It **delays the mating** of females.
 - Late mating means fewer eggs deposited.
 - The dispensers work **24-7** for months.
- Some of the nuts-n-bolts:
 - Dispensers (ties, tubes, ropes, membranes, puffers, etc.)
 - Applied relative to CM phenology, biofix.
 - Function is independent of sprays, tree growth.

A Key Point in CM Development

- 1st Generation Egg-Hatch.
 - The success/failure of 1st gen. larvae set the stage for the remainder of the season.

Broad-Strokes Strategy for CM Management

- Set traps in early spring (around bud break).
- At first biofix, hang mating disruption dispensers asap.
- Keep track of accumulated DDs using IPM Advisory or your own weather monitoring system.
- Make treatments based on DD accumulations (time sprays for egg-hatch periods).
- Continue to monitor traps and fruit.

Good Resources

- www.extension.usu.edu/ipm
- www.extension.usu.edu/insectpath
- www.ipm.ucdavis.edu/default.html
- <u>Common Sense Pest Control</u> (Olkowski et al)
- <u>USU Home Orchard Pest Management Guide</u>
- Pests of the Garden and Small Farm
- Materials: www.ipmtech.com , www.bioquip.com
- Box Elder County Home Orchard Hotline 435-734-9958 ext-298

