Tourism Supply and Demand in Gateway and Natural Amenity Region (GNAR) Communities

Gateway and Natural Amenity Region (GNAR) Research Network

Research Presentation | May 31, 2022

UtahStateUniversity

Eunjung Yang, Ph.D.

Postdoctoral Research Associate Institute of Outdoor Recreation and Tourism

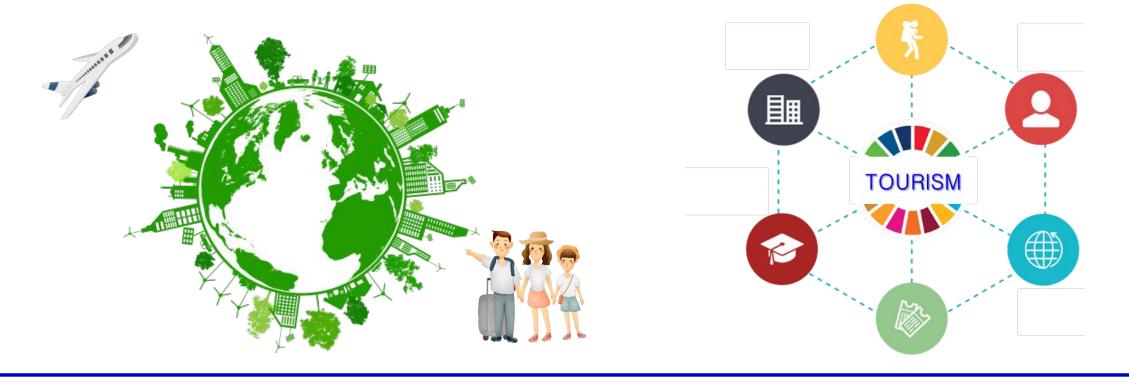
Jordan W. Smith, Ph.D.

Director, Institute of Outdoor Recreation and Tourism Associate Professor, Dept. of Environment and Society

INSTITUTE OF OUTDOOR RECREATION AND TOURISM UTAH STATE UNIVERSITY

How can communities effectively respond to continuously changing economic conditions?

Gateway Natural Amenity Region (GNAR) Communities


- Since the 1970s, economic restructuring from goods-producing to service-producing has had substantial ripple effects in the economy of small cities and towns (Sears & Reid, 1992)
- A GNAR community is a community with a population between 150 and 25,000, within 10 miles of national parks and other protected and public areas, and more than 15 miles from urban areas (Stoker et al., 2021)
- Outdoor recreation-based tourism has now become one of the main sectors leading economic growth in southeastern GNAR communities in Utah (Smith & Miller, 2020)

Source: The Gateway & Natural Amenity Region (GNAR) Initiative (https://www.youtube.com/watch?v=6gvBWcRiBmY)

The Role of the Tourism Industry in GNAR Communities

- Tourism has a powerful potential to not only enhance local revenues but also diversify a community's economic base (Manzoor et al., 2019; Ruiz-Ballesteros & del Campo Tejedor, 2020)
- Visitors with diverse needs are increasingly coming to enjoy nature-friendly activities and cultural/historical experiences in GNAR communities (Mwesiumo et al., 2022)
- Understanding community resources that attract more visitors becomes a key for community resource management and development plans (Chen et al., 2016; Shen et al., 2020)

The Role of the Tourism Industry in GNAR Communities

- The Great American Outdoors Act was signed into law in 2020; attempts to improve access to national parks and other federal lands and advance infrastructure/facilities have accelerated to protect resources while improving the quality of life for local residents and quality experiences for visitors
- Smith and Miller (2020) found that the proportion of population employed in tourism attraction-related sectors (arts/entertainment/recreation) and tourism service-related sectors (accommodation/food services) is larger in GNAR communities than non-GNAR communities in Utah

Western GNAR communities

Have heightened the need for the development of housing, transportation, and other public resources as visitors and migrants have increased rapidly (Stoker et al., 2021)

Eastern GNAR communities

Have prioritized infrastructure, marketing, and education sector development, and as a result of investments, **tourism has reached a tipping point, recruiting new investments and residents and attracting more visitors** (Ezzell et al., 2021)

The Role of the Tourism Industry in GNAR Communities

- GNAR communities have faced various community resource development and management challenges (Rumore et al., 2019) and concerns related to providing quality tourism while conserving the environment (Bennett et al., 2012; Howe et al., 2012)
- Many GNAR communities are still in transition to shift from raw material production industries to tourism and related economic activities

Hachman Index for Utah Counties in 2018

□ < 20.0 □ 20.0 - 39.9 □ 40.0 - 59.9 □ 60.0 - 79.9 ■ 80.0 + (Least Diverse) (Most Diverse)

*The Hachman Index is a measure of the economic diversity of a region based on how closely the composition of industries matches that of a larger and well-diversified reference region

Cache Davis 85.3 Box Elder 60.6 75.0 Morgan 56.7 Salt Lake 94.1 Daggett 34 Summit 42.0 Tooele Wasatch 74.0 Duchesne 10.7 Utah 80.8 Uintah 19.0 Juab 62.6 Carbon 34.0 Sanpete 59.2 Millard 28.2 Grand 47.6 Emery 19.0 Sevier 45.8 Beaver 21.4 Piute 26.2 Wayne 55.0 Iron 80.5 Garfield 38.3 San Juan 46.9 Washington 84 1 Kane 43.6

Weber 90.7

Source: Gardner Policy Institute analysis of Bureau of Labor Statistics (United States) and Utah Department of Workforce Services (Utah counties) employment data

Tourism Supply-Demand Measurements

Prior studies have

- Focused mainly on the tourism supply and demand of large cities to effectively manage and develop tourism resources and to predict future visitation
- Measured communities' tourism attractiveness (Aubert et al., 2013; Formica & Uysal, 2006; Lovingood & Mitchell, 1989; Smith, 1987)
- Classified the types of tourism in communities (Spotts, 1995)
- Proposed a tourism development potential index (Chen et al., 2021)

Hines (2021); source: https://quizizz.com/admin/quiz/60548d64cf8dce001bc83a6f/703-tourist-time

Tourism Supply Measurements

Index or other measure	Author	Study area	Unit(N)	Elements
Efficiency and inefficiency indices of the tourism supply chain	Huang (2018)	30 regions in China	Province (30)	Tourism education/Hotels/Travel agencies/ Tourist attractions
Tourism resource pattern indices	Kozak et al. (2008)	80 cities in Turkey	City (80)	Hotels, motel, and holiday villages/Food and beve rage establishments/Number of employees in tou rism industries/Festivals/Hostels, camp sites, and caravans/Historical places/Museums/Climate
Tourism dependency	Marcouiller & Prey (2005)	Wisconsin, U.S.	County (71)	Camp sites/State parks per capita/ Amusement parks per square mile/ Ski hills per capita/Water acreage per square mile /Public land per square mile
Regional analysis of touris m resources	Spotts (1995)	Michigan, U.S.	County (83)	Urban tourism resources/ Parkland tourism resources/Canoeing/ORV riding tourism resources/Lake Michigan coastal tourism resources/General wildland tourism resources/ General coastal tourism resources
Touristic attractiveness of a destination	Hu & Ritchie (1993)	Hawaii, Australia, G reece, France & China	State or country (5)	Scenery/Climate/Availability and quality of accom modations/Residents' attitudes toward tourists/U niqueness of residents' lives/Historical attractions
Tourism indices	Lovingood & Mitchell (1989)	South Carolina, U.S.	County (46)	Hotels and hotel rooms/Restaurants/ Campgrounds and campsites/Golf courses/ Festivals/Villas/Boat ramps/Historical sites/ State parks and natural sites/Population
Tourism resource indices	Smith (1987)	Ontario, Canada	County (47)	Outdoor recreation/Urban tourism/Cottaging/ Boating/Urban fringe tourism

Tourism Demand Measurements

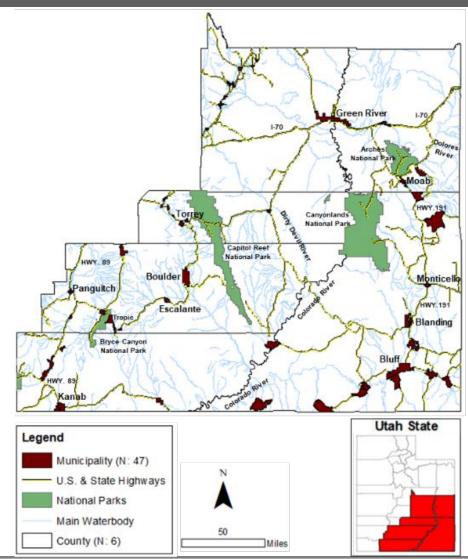
Index or other measure	Author	Study area	Unit(N)	Elements
Tourism demand energy and tourism attractiveness energy	Zhang et al. (2022)	Major theme parks in the U.S.	Theme park (170)	Review (TripAdvisor)
Visitation measures	Zhang et al., (2021)	Utah, U.S.	County (29)	Visitations (Flickr & Panoramio)
Visitation rates	Wood et al. (2013)	836 sites in 31 countries aroun d the world	Photo-user-days (197 m.)	Visitations (Flickr)
The length of stay	Yang et al. (2011)	Yixing, China	Visitor (417)	Traveling distance/Age/Transportation/ Motivation/Assessment of accommodation/ Past visits
Tourism demand forecasting	Song et al. (2010)	Hong Kong	Tourist (23)	Tourist arrivals/Tourist expenditure
Multiple demand measures	Kozak et al. (2008)	80 cities in Turkey	City (80)	Average length of stay (nights spent by foreign and domestic visitors)/Occupancy rate for foreign visitors/The number of foreign visitor/ The number of domestic visitors
Long-run and short-run tourism demand elasticities	Li et al. (2004)	22 Western European countries	Tourist (N/A)	Tourist expenditure

Tourism Supply-Demand Measurements

Index or other measure	Author	Study area	Unit(N)	Elements
Tourism development potential index	Chen et al. (2021)	Hainan (Belt and Road), China	Provincial administrative division (21)	Supply: Direct and indirect supply and consumption/ Value of landscape resources and climate reso urces/Economic contribution/Employment con tribution/Advanced tourism adaptability Demand: Demand potential/Purchasing potential
Relationships between de mand and potential supply	Yoshimura & Hiura (2017)	Hokkaido, Japan	Filtered geo- tagged photos (2,982)	Supply: Naturalness/Water influence/Topography Demand: Visitations (Flickr)
The touristic index	Aubert et al. (2013)	Hungary	Settlement (3,150)	Supply: Attractions/Dominant tourism products/ Tourist information office/Accommodations Demand: Tourism tax
Tourism attractiveness	Formica & Uysal (2006)	Virginia, U.S.	County (95)	Supply: Tourism services and facilities/Cultural and hist orical/Rural lodging/Outdoor recreation Demand: The availability of attraction dimensions rating by 40 experts

Problem Statement

- Prior studies have focused mainly on the tourism supply and demand of urban communities or large cities (Formica & Uysal, 2006; Kirilenko et al., 2020; Zhu et al., 2018)
- Factors relating to tourism supply and demand in major metropolitan regions are different from indicators in small towns/cities like GNAR communities (Smith, 1990)
- An accurate diagnosis of tourism supply and demand for GNAR communities is necessary to better understand what attracts visitors most and the balance between tourism supply and demand



Source: Global Travel Industry News (https://eturbonews.com/868422/is-tourism-open-or-closed-your-fault-or-their-failure/)

Research Outline

Study Area: 47 Municipalities in Utah

Objectives

- 1. Measure the relationships between tourism supply and demand across 47 municipalities in Utah
- 2. Provide an annual tourism visitation estimation model

Methods

Unit of analysis:

Municipality (47 municipalities in southeast Utah)

Period: 3 years (from 2019 to 2021)

Variables:

A total of 23 supply variables and 2 demand variables

□ Analysis: Ordinary least squares (OLS) regression

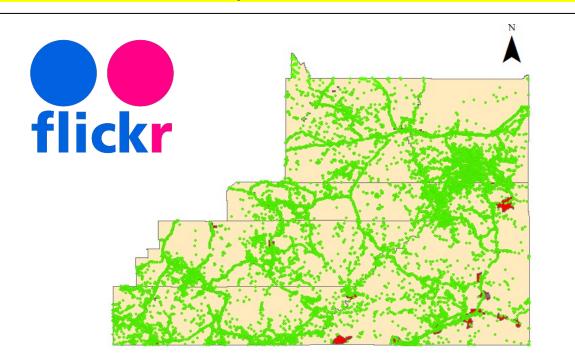
Models:

Cultural, economic, environmental, and infrastructural models

Tourism Supply Variable	Operational definition	Source	Year
Model 1: Cultural			
Historic districts	The area of historic districts	SGID	2021
Historic trails	The length of historic trails	SGID	2021
Historical monuments	The number of historical monuments	UGRC	2021
Viewpoints	The number of viewpoints	OSM	2021
Forest Service visitor centers	The number of Forest Service visitor centers	SGID	2020
Museums	The number of museums	OSM, DMO	2021
Model 2: Economic			
Hotels and motels	The number of hotels and motels	OSM, DMO	2021
Restaurants	The number of restaurants, cafes, fast foods, and pubs	OSM, DMO	2021
Residential areas	The number of residents	UGRC	2011
Model 3: Environmental			
Water body	The length of the water body	USGS, NHD	2020
Water body 10 mi.	The length of the water body intersects with municipalities' buffer of 10 mi.	USGS, NHD	2020
Water body 20 mi.	The length of the water body intersects with municipalities' buffer of 20 mi.	USGS, NHD	2020
Parks	The number of parks	PAD-US	2018
Distance to the closest national park	The road-based network distance from municipalities to the closest national park	NPS, PAD-US	2018
Distance to the closest public land	The road-based network distance from municipalities to the closest public land	BLM, PAD-US	2018
Model 4: Infrastructural			
Roads and highways	The length of roads and highways	UDOT	2021
Rail roads	The length of railroads	SGID	2021
Scenic byways	The length of scenic byways	UDOT	2021
Pathways	The length of trails and pathways	SGID	2021
Camp sites	The number of camp sites	OSM	2021
Golf courses	The area of golf courses	SGID	2016
Boat ramps	The number of boat ramps	SGID	2009
Healthcare facilities	The number of healthcare facilities	SGID	2017

Operational definition	Source	Year
Avg. number of visitors based on mobile location data from 2019 to 2021	Streetlight Data, Inc	2019~2021
Avg. number of photos uploaded in Flickr from 2019 to 2021	Flickr	2019~2021
	Avg. number of visitors based on mobile location data from 2019 to 2021	Avg. number of visitors based on mobile location data from 2019 to 2021 Streetlight Data, Inc

Flickr data processing: All Flickr data were reduced to include only one photo, per user, per day (i.e., a photo-user-day [PUD]) within the GNAR community



Person 1 uploaded 2 photos in the X GNAR community on May 31st, 2022

Person 3 uploaded 4 photos in the X GNAR community on May 31st, 2022

Visitations based on photo data from 2019 to 2021 in southeastern Utah

The number of Flickr users who uploaded a geotagged photos in southeastern Utah (2019-2021) Municipalities in southeastern Utah Counties in southeastern Utah

Tourism Visitation Prediction Model

- Build a tourism supply-demand model to fit tourism visitation (demand) to tourism resources (supply)
- Forecast tourism visitation for 47 municipalities in Utah

Assumption:

- Depending on the type of tourism resources, visitation varies across municipalities in Utah

Regression Model

Visitation =
$$\beta_0 + \sum_{1}^{l} \beta_i Tourism_i + \varepsilon$$

- Visitation : the number of visitation
- β_i : the regression coefficient for $Tourism_i$
- *Tourism*_i: the tourism supply resource i (independent variable i)
- $\boldsymbol{\varepsilon}$: the error term

Results - Cultural model

Historic trails (β=.244, p<.05), viewpoints (β=.447, p<.01), and museums (β=.334, p<.05) had statistically significant impacts on visitations

Model Summary								
Cultural Model R	R Square		Adjusted R Square		Std. Error of the Estimate			
.672		452	.369		4.938			
Coefficients								
Cultural Model	Unstandard	ized Coefficients	Standardized Coefficients			Collinearity Statistics		
	В	Std. Error	Beta	t	Sig.	VIF		
Constant	.127	1.072		.119	.906			
Historic districts	.905	3.560	.033	.254	.801	1.238		
Historic trails	.398	.194	.244	2.052	.047	1.035		
Historical monuments	.907	.549	.227	1.652	.106	1.376		
Viewpoints	13.633	3.691	.447	3.694	.001	1.070		
Forest Service visitor centers	2.283	2.281	.124	1.001	.323	1.117		
Museums	3.480	1.281	.334	2.717	.010	1.105		

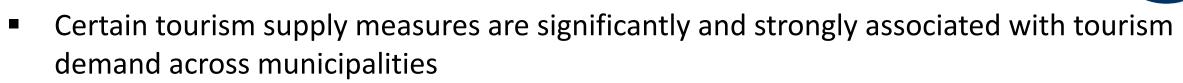
Results - Economic model Hotels and motels (β =.652, p<.05) had a statistically significant impact on visitations **Model Summary** Economic R Square Adjusted R Square Std. Error of the Estimate R Model .792 .627 .601 3.925 **Coefficients** Standardized Collinearity **Unstandardized Coefficients** Coefficients Cultural Model **Statistics** VIF В Std. Error Beta t Sig. 2.066 Constant 1.447 .701 .045 .613 .287 .652 2.137 .038 10.754 Hotels and motels .306 .318 .314 .963 .341 12.269 Restaurants -.001 .001 -.222 -1.415 .164 2.840 Residential areas

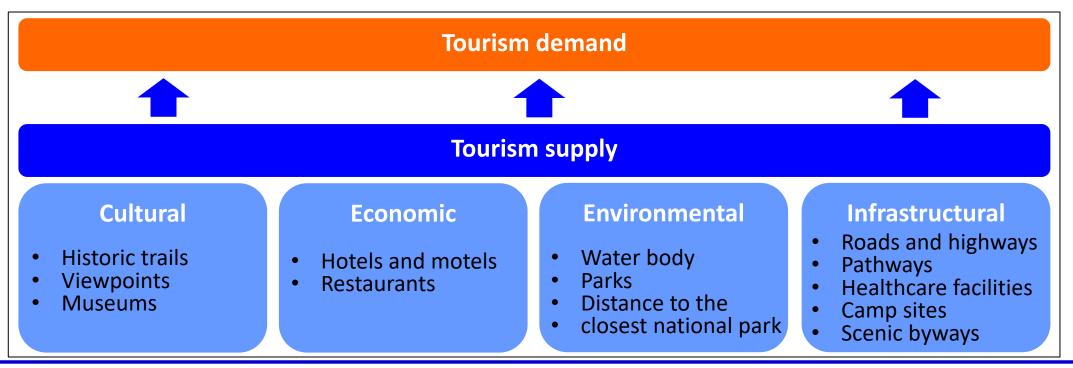
Results - Revised economic model 1									
Hotals and motals $(R - 0.10, n < 0.01)$ had a statistically significant impact on visitations									
Hotels and motels (β =.910, p <.001) had a statistically significant impact on visitations									
Model Summary									
Economic	R	RS	Square	Adjusted R Squa	re	Std. Error of t	he Estimate		
Model		.787	.619	.602			3.921		
			Coefficien						
Cultural Model		Unstandardiz	ed Coefficients	Standardized Coefficients			Collinearity Statistics		
		B	Std. Error	Beta	t	Sig.	VIF		
Constant		1.451	.700		2.072	.044			
				040	C 207	000	2.486		
Hotels and motels		.855	.138	.910	6.207	.000			

ed e	conomic	c model 2					
04.0							
.910, p•	<.001) had	a statistically	significant im	pact on v	isitations		
		Model Sum	mary				
R	R	Square	Adjusted R Squa	re S	Std. Error of the Estimate		
	.767	.588		.569		4.081	
		Coefficier	nts				
	Unstandardi B	zed Coefficients Std. Error	Standardized Coefficients Beta	t	Sig.	Collinearity Statistics VIF	
	1.424	.728		1.955	.057		
	.903	.159	.925	5.675	.000	2.836	
	001	.001	209	-1.283	.206	2.836	
	.910 <i>, p</i> <	.910, <i>p</i> <.001) had R R R .767 Unstandardiz B 1.424	.910, p<.001) had a statistically Model Sum R R Square .767 .588 Coefficients B Std. Error 1.424 .728	Model Summary R R Square Adjusted R Squa .767 .588 Coefficients Unstandardized Coefficients B Std. Error Standardized 1.424 .728	.910, p<.001) had a statistically significant impact on v Model Summary R R Square Adjusted R Square S .767 .588 .569 Coefficients Unstandardized Coefficients Standardized Unstandardized Coefficients B Std. Error Beta t 1.424 .728 1.955	.910, p<.001) had a statistically significant impact on visitations Model Summary R R Square Adjusted R Square Std. Error of t .767 .588 .569 Coefficients B Std. Error Beta t Sig. 1.424 .728 1.955 .057	

Water body (β=.253, p<.05), parks (β=.618, p<.001), and distance to the closest national park (β=-.284, p<.05) had statistically significant impacts on visitations

Model Summary									
Cultural Madel	R Square	Adjuste	ed R Square	Std. Er	Frror of the Estimate				
Cultural Model .748		.560	.493			4.425			
Coefficients									
Cultural Model	Unstandardi: B	zed Coefficients Std. Error	Standardized Coefficients Beta	t	Sig.	Collinearity Statistics VIF			
Constant	3.904	2.225		1.755	.087				
Water body	.320	.138	.253	2.318	.026	1.085			
Water body 10 mi.	.003	.007	.077	.379	.707	3.732			
Water body 20 mi.	003	.002	312	-1.494	.143	3.957			
Parks	2.308	.397	.618	5.819	.000	1.025			
Distance to the closest national park	035	.015	284	-2.289	.027	1.395			
Distance to the closest public land	.419	.208	.253	2.015	.051	1.427			


Results - Infrastructural model


Roads and highways (β=.407, p<.05), pathways (β=-.410, p<.05), healthcare facilities (β=.407, p<.05), camp sites (β=.347, p<.05), and scenic byways (β=.349, p<.05) had statistically significant impacts on visitations

Model Summary								
Cultural Madel	R	Square	Adjusted R Squa	are	Std. Error of	the Estimate		
Cultural Model	.779	.606		.523		4.293		
Coefficients								
Cultural Model	Unstandardiz B	zed Coefficients Std. Error	Standardized Coefficients Beta	t	Sig.	Collinearity Statistics VIF		
Constant	-1.535	1.108		-1.386	.174			
Roads and highways	.077	.033	.407	2.343	.024	2.908		
Pathways	258	.120	410	-2.150	.038	3.510		
Healthcare facilities	1.231	.564	.407	2.184	.035	3.346		
Camp sites	2.452	1.176	.347	2.086	.044	2.678		
Boat ramps	.628	2.993	.028	.210	.835	1.779		
Scenic byways	.469	.160	.349	2.924	.006	1.377		
Golf courses	-13.634	9.784	163	-1.394	.172	1.319		
Railroads	159	.209	100	760	.452	1.682		

Conclusion

- This exploratory study proposes four tourism demand estimation models based on potential tourism supply measures attracting visitation
- The findings can support GNAR community practitioners to effectively develop resourcebased community development plans and policies based on tourism supply and demand

Future Steps

- A spatial approach needs to be applied in order to examine spatially varying relationships between tourism supply and demand across municipalities
- A seasonal estimation model should be developed to reflect seasonality

Thank you

INSTITUTE OF OUTDOOR RECREATION AND TOURISM UTAH STATE UNIVERSITY

