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The US Fish and Wildlife Service (USFWS) concluded in 2015 that listing the greater sage-

grouse (Centrocercus urophasianus) for protection under the Endangered Species Act of 1973 

(USFWS 2015) was not warranted (USFWS 2015).  In making this decision, the USFWS cited 
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that the primary species conservation threats, habitat loss and fragmentation, and lack of 

regulatory mechanisms had been mitigated by range wide conservation actions implemented by 

the states, and federal land and resources management agencies (USFWS 2013).  

In response to guidance provided by the USFWS, the Bureau of Land Management 

(BLM) and U.S. Forest Service (USFS) revised their resource management (RMP) and land use 

plans (LUP) to address the sage-grouse conservation threats identified by the USFWS on federal 

lands (USFWS 2013). In the record of decision (ROD), the USFS and BLM cited Connelly et al. 

(2000) as the best available science when they established standards that will be used evaluate 

sage-grouse habitat conditions on federal lands (BLM 2015). To implement the RMP and LUP, 

the BLM and the USFS have committed to re-evaluate the existing management actions by 2020, 

to include livestock grazing allotments, to determine if the vegetation conditions and the 

landscapes approximate the ROD sage-grouse habitat guidelines. 

Connelly et al. (2000) recommended that each state and province develop and implement 

sage-grouse conservation plans that address local differences in landscape conditions. The 

guidelines in addition to providing habitat recommendations, suggested actions that could be 

taken to mitigate the effects of anthropogenic activities on sage-grouse and their habitats.  

Since the guidelines were published in 2000, new information suggests additional sources 

of sampling bias (Smith et al. under review). For ground-nesting birds, vegetation surrounding 

the nest may play an important role in mediating nest success by providing concealment from 

predators.  Height of grasses surrounding the nest has been reported to be a driver of sage-grouse 

nest survival in greater sage-grouse (Gregg 1991, Gregg et al. 1994, Doherty et al. 2014). 

However, Gibson et al. (2016) reported that widely-used field methods can produce misleading 

inference on the relationship between grass height and nest success. Specifically measuring 
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vegetation concealment following nest fate (failure or hatch) introduces a temporal bias whereby 

successful nests are measured later in the season, on average, than failed nests. This sampling 

bias can produce inference suggesting a positive effect of grass height on nest survival, though 

the relationship arises due to the confounding effect of plant phenology, not an effect on 

predation risk (Smith et al. in press). 

 Sage-grouse population vital rates (i.e., nest initiation rates, nest success, clutch size, 

breeding success, fledging success, and survival probability of breeding aged birds) may also be 

affected by environmental variability, population structure and past reproductive efforts (Guttery 

et al. 2013, Caudill et al. 2014, Caudill et al. 2016a, Caudill et al. 2016b). Guttery et al. (2013), 

Caudill et al. (2014), and Dahlgren et al. (2016) demonstrated that the effect of environmental 

factors such as weather on chick survival and the role of juvenile and adult females and on 

annual herbaceous cover are paramount to the long-term conservation of the species. Thus, 

focusing on just one aspect of the sage-grouse ecology such as the effect of grass height on nest 

success may overlook the importance of seasonal habitats in sustaining viable populations and in 

particular the impact of seasonal variation in weather on sage-grouse and their habitats. 

Connelly et al. (2000) provided habitat vegetation guidelines for nesting, breeding, and 

winter habitats. Their broad guidelines were gleaned habitat data recorded at sage-grouse use 

locations and reported in student thesis, dissertations, and peer-reviewed papers published prior 

to 2000. As such, the guidelines represent a range of estimated conditions which could be 

extrapolated to determine overall habitat suitability. However, because the Connelly et al. (2000) 

habitat guidelines were developed for sage-grouse primarily inhabiting sagebrush-steppe 

(Artemisia spp.), they may not be applicable to the Great Basin and desert shrub areas of the 

Intermountain West (Messmer 2013, Dahlgren et al. 2016). Thus, achieving the ROD habitat 



4 
 

vegetation standards based strictly on Connelly et al. (2000) in areas exhibiting inherent 

differences in precipitation and ecological site potentials may be problematic. 

To address these limitations we developed an empirical approach that incorporates 

spatially continuous habitat vegetation, climatic, and elevation data recorded at known nest and 

brood locations from 1998-2014 across the state of Utah to model micro-site 4th order habitat 

guidelines (Stiver et al. 2015). We used a non-parametric ensemble classifier and a clustering 

algorithm to identify distinct sage-grouse nesting and breeding habitats across and within sage-

grouse management areas (SGMAs; Utah 2013) and BLM priority (PHMA) and general habitat 

areas (GHMAs; BLM 2015). The relative importance of these clusters to 4th order habitat 

conditions were assessed using field observations recorded at radio-telemetry locations statewide 

(Dahlgren et al. 2016). We then generated a set of guidelines for nesting and brood-rearing 

habitat for the clusters that differed in 4th order habitat conditions.   

Study Area 

Sage-grouse location data were compiled from sage-grouse populations at 13 study areas in Utah 

from 1998 to 2014 (Fig. 1). These study areas represented most of the sage-grouse populations in 

Utah. 

Populations in northern Utah inhabited sagebrush-steppe, while populations in central and 

southern Utah primarily used sagebrush semi-desert (West 1983). Both were shrub dominated 

sagebrush systems differentiated by an increased herbaceous component in higher latitude 

sagebrush-steppe 

systems compared with lower latitude sagebrush semi-desert.  
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Generally, big sagebrush (A. tridentata) varieties dominated most landscapes within 

occupied habitats with Wyoming (A. t. wyomingensis), basin (A. t. tridentata), and mountain 

(A. t. vaseyana) big sagebrush at lower, mid, and high elevations, respectively. Shallow soils 

supported inclusions of low (A. arbuscula) and black (A. nova) sagebrush across the state. Silver 

sagebrush (A. cana) was present at high-elevation mesic areas and there was limited distribution 

of three-tip sagebrush (A. tripartita) in northern Utah.  

Beck et al. (2003) mapped the current distribution of sage-grouse within Utah. Most of 

the sage-grouse populations in the state were relatively small and inhabited isolated and remote 

landscapes (Beck et al. 2003). The largest sage-grouse populations in the state were associated 

with larger, contiguous sagebrush landscapes (Dahlgren et al. 2016). 

Methods 

Sage-grouse telemetry database 

We used 1,043 sage-grouse nest and 5,853 brood locations recorded by USU and BYU 

researchers using very high frequency radio-telemetry necklace-style radio transmitters from 

1998-2013 to describe habitat-use areas in Utah (Dahlgren et al. 2016; Fig. 1). Field variables 

were measured at many of these locations following standard procedures (Connelly et al. 2003). 

We focused on seven variables available in the telemetry database that would be most applicable 

to management (Connelly et al. 2000). The included percent shrub cover (shrub.cvr), shrub 

height (shrub.ht), forb cover (forb.cvr), forb height (forb.ht), grass cover (grass.cvr), grass height 

(grass.ht), and percent sagebrush composition (sage.comp.pct). 

Climate, elevation, and vegetation data 
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We obtained climatic, topographic, and vegetation cover values from freely available, nationally 

consistent datasets. Climatic conditions were described at 800m spatial resolution by the average 

annual temperature, precipitation, and minimum and maximum temperatures, over the period 

1981-2010, as measured by the PRISM Climate Group. Elevation and vegetation data were taken 

from the LANDFIRE project (www.landfire.gov). LANDFIRE is a consortium of federal 

agencies that produces consistent, continuous geo-spatial raster data products at 30m resolution 

describing topography, vegetation, and land cover nationwide. At each nest and brood location, 

we tabulated the prevalence of vegetation classes at the nearest 100 pixels using the Existing 

Vegetation Type (EVT) 1.3.0 dataset. The EVT classifications reflect ecological systems (Comer 

et al. 2003), and are the finest thematic resolution of land cover data in the LANDFIRE suite of 

products. To spatially project the results of the clustering technique, we also collected climate 

and elevation values, and tabulated vegetation classes, at a grid of regularly spaced points with 1-

km spacing across all locations within SGMAs, PHMAs, GHMAs, and any location within 20-

km of a recorded sage-grouse location in the telemetry database. Tabulating the nearest 100 

vegetation pixels implies a buffer distance of ~175 m around each telemetry and grid point 

location, or an area of about 9.6 ha. This local scale should provide a reasonable reflection of the 

vegetation structure and composition for the daily forage and cover needs of sage-grouse. 

Cluster development and analysis 

Our analysis of the sage-grouse telemetry data to develop the habitat clusters is 

summarized below. 

1. We used random forest (RF) clustering (Shi and Horvath 2006) to classify k clusters in 

the telemetry data, for values of k ranging from 2 to 6. We assessed the stability of the 

clusters using the Jaccard coefficient (Hennig 2007). 

http://www.landfire.gov/
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2. We projected cluster classes spatially to sage-grouse radio-telemetry locations statewide 

by fitting a second RF trained on clusters identified in step 1. 

3. We assessed cluster significance by summarizing and statistically comparing 4th order 

habitat conditions across clusters.  

4. We selected the optimal number of clusters k based on the cluster stability and 

significance assessed in steps 2 and 3. We then generated habitat guidelines based on 

distribution of 4th order habitat conditions across clusters. 

Random forest clustering 

A major output of clustering methods is a dissimilarity measure. We completed an 

unsupervised RF to estimate dissimilarities between the sage-grouse telemetry locations using an 

RF predictor (Breiman 2001). A RF predictor is a collection of individual classification trees, 

each of which is trained on a random subset of the data. Model predictions were made by 

aggregating across the individual trees. The RF procedure generated a measure of proximity 

between two samples based on the proportion of times the trees in the forest that placed them in 

the same terminal node. When used as an unsupervised classifier, RF separates the observed data 

from a synthetic dataset created by sampling randomly from the univariate distributions of the 

original data. Restricting the resulting proximity matrix to the observed data yields a measure of 

similarity between unlabeled data.  

We performed unsupervised RF on a sample of 1467 telemetry locations drawn such that 

not more than one data point was represented per 1 km2 region across the state. This approach 

provided a spatially balanced representation of sage-grouse space use in the state relative to the 

resolution of the climate data, and expedited processing times. After fitting an unsupervised RF 
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predictor to these data, we defined a dissimilarity matrix as the square root of one minus the 

proximity matrix (Kaufman and Rousseeuw 1990). 

We used partitioning around mediods (PAM; Kaufman and Rousseeuw 1987) to identify 

clusters of similar observations in the dissimilarity matrix. The PAM is similar to the commonly 

used kmeans classifier, which assigns observations to clusters based on minimizing the distance 

from each observation to the cluster centroid. In PAM, these centroids are constrained to be one 

of the observations in the clustering algorithm. This produced interpretable cluster centroids that 

were guaranteed to be members of the training data set.  

We assessed the stability of the clustering solutions using the Jaccard similarity 

coefficient on 30 bootstrap samples of the nest and brood data (Hennig 2007). The Jaccard 

similarity coefficient is a statistic used for comparing the similarity of two sets. It is defined as 

the size of the intersection of the sets divided by the size of the union of sets; higher values 

indicate more stable clusters. Generally, a valid, stable cluster should exhibit a Jaccard 

coefficient of greater than 0.75; values from 0.6 to 0.75 indicate patterns in the data but exactly 

which points should belong to which cluster is doubtful; Jaccard values below 0.6 should not be 

trusted (Hennig 2007). We used the clusterboot function in the FPC package in R to estimate the 

average bootstrapped Jaccard values for each cluster. 

Spatial projection of clusters  

We used a supervised random forest model to spatially project the clustering results. In 

this model, PAM cluster labels were predicted using the suite of climatic, elevation, and 

vegetation variables at sage-grouse nest and brood telemetry locations. The ability of the random 

forest model to accurately predict cluster values provided an additional indication of whether the 
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clusters reflected real structure in the data. After fitting the model to PAM cluster labels at 

telemetry locations, it was used to predict cluster labels at the grid of regular points covering all 

areas within 20-km of SGMAs, PHMAs, GHMAs, and sage-grouse telemetry locations. The grid 

of points was converted to raster format, with pixel values indicating predicted cluster 

memberships. Finally, we ran a 3x3-pixel window over the raster surface that assigned the modal 

value to the center pixel. This had the effect of smoothing the raster surface by removing the salt-

and-pepper effect that arises from individual pixels surrounded by neighbors of a differing class. 

This resulted in a more spatially consistent, less fragmented map of habitat clusters.  

Assessing cluster significance 

We used cluster values extracted from the smoothed raster surface for each telemetry 

location to assess cluster significance. We used pairwise Wilcoxon rank sum tests, utilizing a 

Holm p-value adjustment to control for type I error risk to determine if the utility of the k clusters 

for 4th order habitat characteristics differed. Alpha values of less than 0.05 were considered 

significant.  

Results 

Cluster stability 

Cluster partitions exhibited greater stability for lower numbers of k (Table 1). Across 30 

bootstrap iterations, the average minimum Jaccard similarity coefficient value for k = 2 was 0.91, 

and the mean was 0.94, indicating two highly stable clusters. When k = 3, the average minimum 

Jaccard was 0.81, and the mean was 0.84, again indicating stable clusters. At k = 4, bootstrapped 

Jaccard values were 0.52, 0.73, 0.82, and 0.83, indicating that three of the four clusters were 

stable, with the fourth capturing a dubious pattern in the data. The average bootstrapped Jaccard 

value for k = 4 was 0.73, indicating that on average the clustering solution captured quite stable 
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patterns in the data.  When k equaled five or six, average Jaccard values were 0.68 and 0.64 

respectively, indicating that these clustering solutions were progressively less stable than those 

found for smaller values of k.  

Significance of clusters 

 The supervised RF used to predict clusters performed well for all values of k, with 

monotonically increasing OOB error rates of 1.9% when k = 2 to 6.1% when k = 6, providing 

additional evidence that the clusters reflect real structure in the climatic, topographic, and 

vegetation data. Pairwise comparisons of seven field variables in the nest data using Wilcoxon 

rank sum tests indicated a monotonic negative relationship between the number of clusters and 

the rate of significant pairwise differences (Table 2). For values of k from 2 through 6, 71%, 

67%, 60%, 47%, and 40% of all pairwise comparisons differed, respectively. Notably, none of 

the pairwise cluster comparisons showed a significant difference in shrub cover at nest locations. 

The other six 4th order habitat variables exhibited a generally declining rate of significant 

differences with increases in k. Average rates of significant pairwise differences across clusters 

for values of k from 2 to 6 were 0 for shrub cover, 0.28 for forb height, 0.55 for shrub height, 

0.73 for sage.comp.pct, 0.77 for grass cover, 0.78 for forb cover, and 0.87 for grass height.   

 Pairwise comparisons using the brood data show a similar decreasing relationship 

between k and the rate of significant pairwise differences (Table 3), although it is not strictly 

monotonic. For values of k from 2 through 6 in the brood data, 71%, 95%, 81%, 77%, and 67% 

of all pairwise comparisons differed, respectively. The clusters were able to distinguish 

significant differences in the shrub cover variable for the majority of pairwise comparisons with 

the exception of the k = 2 solution, in which shrub cover did not differ. Average rates of 

significant pairwise differences across clusters for values of k from 2 to 6 were 0.4 for 
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sage.comp.pct, 0.53 for grass cover, 0.60 for shrub cover, 0.67 for forb height and shrub height, 

0.87 for grass height, and 0.93 for forb cover. 

 The distributions of the seven 4th order habitat variables, elevation, and precipitation, are 

shown for k = 4 clusters for nest and brood data in Figures 1 and 2, respectively. The clusters 

quite effectively separated elevation and precipitation, and performed variably on the seven field 

variables, with minimal differences between shrub cover across clusters, particularly in the nest 

data. Visual assessment of the density curves suggests general agreement with the findings of the 

pairwise Wilcoxon tests.  

Spatial projection of clusters 

 When the k = 4 clusters are spatially projected across the state of Utah, two of the clusters 

cover very large extents, while two cover much more localized areas. The two clusters covering 

localized areas are located in the Parker Mountain area in south-central Utah. The ‘Parker 2’ area 

is the highest-elevation cluster in the state, followed by ‘Parker 1.’   

Selection of optimal number of clusters 

We selected k = 4 to represent classes of sage-grouse nesting and brooding habitats across 

the state. With four clusters, 60% and 81% of pairwise comparisons of the field variables 

differed significantly in the nest and brood data, respectively. Cluster stability was reasonably 

high as assessed using the Jaccard coefficient, although the ‘Parker 2’ cluster exhibited a 

bootstrapped Jaccard values of 0.52, suggesting that it may not reflect meaningful structure in the 

data. The other clusters exhibited bootstrapped Jaccard values of 0.73 (‘Parker 1’), 0.82 (‘Med-

high’), and 0.83 (‘Low’). Hence, three of the four clusters exhibited good stability.  
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While the k = 2 and k = 3 solutions had more desirable Jaccard and pairwise Wilcoxon 

results than the k = 4 solution, we decided to use the higher k value because we are trying to 

identify meaningful local habitat guidelines, and a cluster solution that is too coarse is at risk of 

containing information that does not sufficiently reflect local conditions. Indeed, a higher value 

of k may prove more desirable than the four cluster solution we present here.  

While we had expected more differentiation of local habitat types across the state, future 

refinement of this approach may improve the clustering results. For example, performing the 

clustering technique presented here on subsets of telemetry locations defined by temporal 

windows may produce improved results. The k = 4 solution presented here nonetheless retained 

satisfactory, if not exemplary, quantitative indicators (Jaccard, Wilcoxon values) while 

classifying the state into habitat areas that generally agree with our knowledge of conditions on 

the ground. Because not all of the 4th order habitat conditions differ across clusters, we suggest 

that habitat guidelines be adapted from Tables 4 and 5, perhaps by taking averages across non-

differing clusters identified in the “same_as” column or by visual assessment of density curves in 

Figures 1 and 2.  

Discussion 

     Management Implications 
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Table 1. Cluster stability assessments using the Jaccard similarity coefficient. K = 3 clusters 

was selected as a reasonable representation of stable clusters, in which the minimum Jaccard 

value exceeded 0.75. We did not select the 2 cluster solution to enable greater localization of 

habitat guidelines. 

[note: dissim = sqrt(1 – proximity); all 1467 telemetry locations (1 per 1 km pixel) were used.] 

Number of clusters (k) Minimum Jaccard Mean Jaccard 

2 0.91 0.94 

3 0.81 0.88 

4 0.52 0.73 

5 0.55 0.68 

6 0.26 0.64 
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Table 3. Proportion of pairwise comparisons of 4th order habitat characteristics in nest data that 

exhibited significant differences at a 95% confidence level, as assessed using Wilcoxon rank 

sum tests, using the Holm p-value adjustment method to account for familywise Type I error. 

The last column indicates the overall rate of occurrence of significant differences. 

# of 

cluster

s (k) 

Max # 

of 

signif 

diffs =  

k(k-

1)/2 

shrub.c

vr 

shrub.

ht 

forb.cv

r 

forb.ht grass.c

vr 

grass.h

t 

sage.c

omp.pc

t 

Signif 

diff 

rate 

2 1 0.00 1.00 1.00 0.00 1.00 1.00 1.00 0.71 

3 3 0.00 0.33 0.67 0.67 1.00 1.00 1.00 0.67 

4 6 0.00 0.67 1.00 0.33 0.67 0.83 0.67 0.60 

5 10 0.00 0.40 0.70 0.20 0.60 0.80 0.60 0.47 

6 15 0.00 0.33 0.53 0.20 0.60 0.73 0.40 0.40 

Average rate 0.00 0.55 0.78 0.28 0.77 0.87 0.73  
 

 

Table 4. Proportion of pairwise comparisons of 4th order habitat characteristics in brood data 

that exhibited significant differences at a 95% confidence level, as assessed using Wilcoxon 

rank sum tests, using the Holm p-value adjustment method to account for familywise Type I 

error. The last column indicates the overall rate of occurrence of significant differences. 

# of 

cluster

s (k) 

Max # 

of 

signif 

diffs =  

k(k-

1)/2 

shrub.c

vr 

shrub.

ht 

forb.cv

r 

forb.ht grass.c

vr 

grass.h

t 

sage.c

omp.pc

t 

Signif 

diff 

rate 

2 1 0.00 1.00 0.00 1.00 1.00 1.00 1.00 0.71 

3 3 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.95 

4 6 0.67 0.67 1.00 0.67 1.00 1.00 0.67 0.81 

5 10 0.70 0.90 0.80 0.80 0.70 1.00 0.50 0.77 

6 15 0.60 0.67 0.93 0.67 0.53 0.87 0.40 0.67 

Average rate 0.53 0.85 0.75 0.83 0.85 0.97 0.71  
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Table 4. Summaries of 4th order brooding habitat characteristics per cluster. Column name: cl_no: numeric cluster identifier; 

cluster: descriptive cluster name; n_sg: number of brood telemetry locations; n_obs: number of telemetry locations with 

observations of variable; n_diff: number of significantly differing clusters based on pairwise Wilcoxon test at 95% confidence level 

with Holm p-value correction; same_as: indicates cl_no values of clusters that do not differ; q5… q95: quantiles of observations. 

Brood 

Variable cl_no cluster n_sg n_obs mean n_diff same_as q5 q10 q15 q20 q30 q50 q95 

shrub.cvr 

2 Low 849 266 19.65 ***  0.0 5.3 7.4 9.0 12.1 19.0 39.1 

1 

Med-

high 3271 850 26.98 ** 4 3.8 7.4 10.7 12.7 16.7 24.3 60.2 

3 Parker 2 1060 370 22.84 ***  7.8 10.6 12.7 14.9 17.4 22.1 39.9 

4 Parker 1 663 246 25.45 ** 1 10.8 14.0 15.8 17.5 20.2 25.1 40.8 

shrub.ht 

2 Low 849 162 39.22 * 1, 3 18.6 19.9 21.5 23.4 26.6 32.6 83.7 

1 

Med-

high 3271 405 42.13 * 2, 3 13.5 17.1 19.3 22.0 25.7 33.7 72.5 

3 Parker 0 1060 100 34.09 * 1, 2 11.4 14.2 16.0 17.5 22.7 33.7 61.2 

4 Parker 1 663 97 22.75 ***  8.7 9.4 10.3 11.0 12.2 14.6 52.9 

forb.cvr 

2 Low 849 267 6.42 ** 4 0.0 0.3 0.5 0.8 1.3 3.2 24.3 

1 

Med-

high 3271 843 13.83 ***  1.3 2.5 3.3 4.4 6.7 12.4 33.0 

3 Parker 2 1060 370 9.96 ***  1.8 2.3 2.9 3.5 5.3 8.6 22.8 

4 Parker 3 663 246 4.87 ** 2 0.5 1.0 1.2 1.5 2.1 3.5 14.0 

forb.ht 

2 Low 849 157 11.86 ***  2.8 4.0 4.6 5.1 6.0 9.3 26.9 

1 

Med-

high 3271 402 12.1 ***  5.3 6.3 7.2 7.8 8.6 10.4 24.2 

3 Parker 4 1060 100 6.03 ** 4 3.3 3.5 4.0 4.1 4.5 5.3 10.7 

4 Parker 5 663 97 6.81 ** 3 3.1 3.7 4.2 4.4 5.0 6.2 13.3 

grass.cvr 

2 Low 849 267 12.47 * 3, 4 0.1 2.0 3.2 3.9 5.0 8.6 35.5 

1 

Med-

high 3271 845 18.03 ***  4.4 5.5 7.1 8.4 11.1 15.8 40.8 

3 Parker 6 1060 370 10.75 * 2, 4 4.1 5.1 5.9 6.6 8.0 10.1 19.6 

4 Parker 7 663 246 10.19 * 2, 3 2.5 3.9 4.8 5.5 7.1 9.4 22.6 

grass.ht 

2 Low 849 171 26.04 ** 1 12.0 16.4 18.5 19.5 20.4 25.0 42.9 

1 

Med-

high 3271 407 25.94 ** 2 10.6 12.4 13.8 15.1 17.7 23.1 47.1 

3 Parker 8 1060 100 10.11 ***  5.8 6.5 7.1 7.6 8.0 9.5 15.4 
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4 Parker 9 663 97 11.03 ***  6.3 6.9 7.6 8.5 9.2 10.8 17.2 

sage.comp.pct 

2 Low 849 85 57.55 ** 1 0.0 0.0 0.0 15.1 28.2 67.3 100.0 

1 

Med-

high 3271 133 68.32 * 2, 4 5.8 20.1 36.3 46.9 59.8 76.8 100.0 

3 

Parker 

10 1060 26 96.89 ***  89.1 92.6 94.8 96.3 99.0 100.0 100.0 

4 

Parker 

11 663 22 83.27 ** 1 45.3 62.2 65.7 73.5 79.4 87.8 99.9 

 

 

 

Table 5. Summaries of 4th order nest habitat characteristics per cluster. Column name: cl_no: numeric cluster identifier; cluster: 

descriptive cluster name; n_sg: number of brood telemetry locations; n_obs: number of telemetry locations with observations of 

variable; n_diff: number of significantly differing clusters based on pairwise Wilcoxon test at 95% confidence level with Holm p-

value correction; same_as: indicates cl_no values of clusters that do not differ; q5… q95: quantiles of observations. 

Nest Variable cl_no cluster n_sg n_obs mean n_diff same_as q5 q10 q15 q20 q30 q50 q95 

shrub.cvr 

2 Low 144 114 24.93 ** 3 5.84 11.11 13.61 15.5 19.09 25.82 44.38 

1 

Med-

high 662 251 29.47 * 3, 4 13.17 14.5 17.44 19.33 21.75 27.55 51.83 

3 Parker 2 165 117 28.95 * 1, 3 6.96 10.91 18.81 21.31 24.03 29.23 45.38 

4 Parker 1 65 37 26.06  1, 2, 4 8.08 8.08 8.66 11.47 16.9 25.93 45.91 

shrub.ht 

2 Low 144 113 44.92 ** 3 20.56 26.07 27.61 29.94 32.65 41.76 82.02 

1 

Med-

high 662 204 35.59 ** 3 16.78 19.73 21.57 23.73 26.8 33.65 63.61 

3 Parker 2 165 51 27.3 ***  12.34 12.94 13.99 14.37 18.98 25.47 47.75 

4 Parker 1 65 13 38.23 * 1, 2 19.73 23.91 24.81 26.48 32.45 39.77 54.65 

forb.cvr 

2 Low 144 113 7.99 ** 3 0 0.35 0.8 1.22 2.04 4.1 27.81 

1 

Med-

high 662 271 13.51 ***  1.06 2.6 3.73 4.5 6.35 12.05 31 

3 Parker 2 165 117 2.96 ***  0.16 0.3 0.42 0.59 0.85 1.28 9.21 

4 Parker 1 65 37 5.95 ** 2 0.72 1.05 1.2 1.26 1.97 4.35 19.49 

forb.ht 

2 Low 144 108 9.81 * 1, 3 2.18 4.04 4.63 5.4 6.92 9.78 17.9 

1 

Med-

high 662 204 9.14 * 2, 3 3.35 4.31 5.01 5.92 6.89 8.58 16.12 

3 Parker 2 165 51 7.07 ** 3 3.64 4 4.28 4.4 4.91 6.33 13.37 
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4 Parker 1 65 13 7.1  1, 2, 4 2.87 3.07 3.62 3.82 4.27 6.81 12.4 

grass.cvr 

2 Low 144 113 17.1 ** 1 2.58 3.05 3.49 4.25 6.55 14.5 41 

1 

Med-

high 662 250 15.14 ** 2 3.27 4.31 6.4 7.4 9.6 13.85 32.26 

3 Parker 2 165 117 6.96 ** 3 2.11 2.53 2.7 3.25 4.15 6.18 13.98 

4 Parker 1 65 37 6.7 ** 4 4.05 4.39 4.46 4.57 5.25 6.13 12.18 

grass.ht 

2 Low 144 113 21.03 ***  9 9.91 12.83 14.36 15.58 20 37.51 

1 

Med-

high 662 204 17.36 ***  8.57 10.01 11.17 12.11 13.27 16.05 31.87 

3 Parker 2 165 51 11.13 ** 3 7.44 7.78 8.12 8.59 9.45 10.73 19.13 

4 Parker 1 65 13 10.14 ** 4 6.64 6.95 7.9 8.32 8.82 10.15 13.86 

sage.comp.pct 

2 Low 144 52 61.7 ***  17.64 27.34 34.71 37.47 44.43 62.89 98.54 

1 

Med-

high 662 55 75.07 ** 4 2.76 27.45 45.65 50.42 71.47 87.83 100 

3 Parker 2 165 38 82.28 ** 1 51.95 56.66 67.15 69.45 78.36 88.03 98.45 

4 Parker 1 65 9 97.11 ***  88.16 91.28 93.94 96.13 98.38 99.35 100 
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Figure 1: Distributions of variables across k=4 clusters in the nest data. 
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Figure 1. Distributions of variables across k=4 clusters in the brood data. 
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Figure 3. Spatial projection of k = 4 clusters 

 

 

 

 


