

Fertilizer and Soil Amendment Selection and Use in Utah Soils

Dr. Melanie Stock
USU Assistant Professor / Extension Urban & Small Farms Specialist
Certified Professional Soil Scientist, SSSA

USU Urban & Small Farms Conference Soil & Water Session 3/1/2021 @ 2:00 pm MST

Today's Topics

- Core concepts of soil fertility
- Understanding and selecting fertilizers and amendments
- Determining nutrient application rates to maintain sustainable soils

Let's start with definitions

- Products intended to supply plant nutrients always have 3 numbers: N-P-K, the percent nitrogen, phosphorus (as P_2O_5), and potassium (as K_2O_5)
- The product is a **fertilizer** when the three numbers **add up to <u>more</u> than 24.**
- The product is an amendment when they add up to less than 24.

GUARANTEED ANA	LYSIS:
Total Nitrogen (N)	496
4% Water Insoluble Nitrog	en
Available Phosphate (P20s)	6%
Soluble Potash (K ₂ 0)	3%
Calcium (Ca)	7.5%

Last definition: "Organic"

- **1.** Organic matter the remains of decomposed plants/animals in soil.
- 2. Certified Organic USDA program ensures product meets certain farming practice standards *e.g.* seed source, fertilizer, pesticides, etc. Official labels.
- 3. Organic (chemistry) any compound with carbon in it, typically from something that was once alive. For example, the nitrogen inside a decomposing clover plant is considered "organically bound".

17 Essential Nutrients

Macronutrients (large quantities, % in tissue):

oxygen hydrogen carbon

nitrogen phosphorus potassium

sulfur magnesium calcium

Micronutrients (small quantities, ppm or ppb)

zinc iron copper boron manganese chlorine cobalt molybdenum

Element	Role in Plant	
Nitrogen (N)	Important part of proteins, chlorophyll, and nucleic acids	
Phosphorus (P)	Important for energy transfer and building proteins, coenzymes, nucleic acids, and metabolic substrates.	
Potassium (K)	Used in photosynthesis, carbohydrate translocation, protein synthesis, and more	
Calcium (Ca)	Used in cell walls and plays a role in structure/permeability of membranes	
Magnesium (Mg)	Used in chlorophyll, and is an enzyme activator	
Sulfur (S)	Important part of plant proteins	Α
Boron (B)	Helps move sugars and metabolize carbohydrates	Adapted
Chlorine (Cl)	Involved with oxygen production in photosynthesis	ed fr
Copper (Cu)	Catalyst for respiration, and used in enzymes	from:
Iron (Fe)	Helps make chlorophyll and in enzymes for electron transfer	Brady
Manganese (Mn)	Controls oxidation/reduction systems and photosynthesis	y and
Molybdenum (Mo)	Involved in nitrogen fixation and transforming nitrate to ammonium	d Weil
Nickel (Ni)	Necessary for germination and the function of urease, an enzyme	il (20

Helps regulate metabolic activity

Zinc (Zn)

Plant available nutrient forms (key nutrients)

Nutrient Type	Nutrient name	Plant Available form(s)			
Macronutrients	Nitrogen (N)	NO ₃ - and NH ₄ +	"nitrate and ammonium"		
	Phosphorus (P)	H ₂ PO ₄ - and HPO ₄ 2-	"orthophosphates or phosphate"		
	Potassium (K)	K ⁺	"potassium"		
	Sulfur (S)	SO ₄ ²⁻	"sulfate"		
	Calcium (Ca)	Ca ²⁺	"calcium"		
Micronutrients	Zinc (Zn)	Zn ²⁺	"zinc or chelated zinc"		
	Iron (Fe)	Fe ²⁺ and Fe ³⁺	"iron; ferrous, ferric, chelated iron"		

What do these plant available forms have in common?

General nutrient retention in the soil

- Sand and silt have no charge, no attraction.
- Clay has a negative charge. It attracts water and nutrients with a positive charge. It repels nutrients with a negative charge (magnet analogy)
- Organic matter attracts water and nutrients with positive and negative charges

General nutrient retention in the soil

It depends where and how the nutrients are stored in the soil

- "Soluble" nutrients in the soil water can be accessed <u>immediately</u> by plants, like a free checking account
- "Insoluble" nutrients in the soil cannot be accessed by plants, like a custodial account. The soil makes them available when the checking account gets low, often with the help of microbes
 - Nutrients without a charge are often "organically-bound" or "insoluble" –
 aka not plant available. They must first decompose ("mineralize")
- Nutrients embedded into the soil's crystalline structure will not be available to the plant in its lifetime, like a very protected trust account

Nutrient release from fertilizers/amendments – same concept

- "Available" or "soluble" nutrients are available right away
- "Insoluble", "organically-bound nutrients", or "slow release" are NOT available right away. They must be broken down first. Pluses and minuses - important considerations.

Total Nitrogen (N) 12.0%

12.0% Water Insoluble Nitrogen*

*12.0% Slow Release Nitrogen from Feather Meal

General nutrient release timing

- Soluble nutrients are available right away and last weeks to months
 - Consider split applications (early and mid-season)
 - Depending on concentration, may want to mix into soil to avoid burn.
- Insoluble nutrients take several weeks to years to be available
 - Example: Blood meal (13-2-1) several weeks. Greensand (0-0-1) years or more
- Composts has soluble and insoluble nutrients
 - Year 1: ~5-10% of N, ~75% P, and most K released
- Manure has soluble and insoluble nutrients
 - Year 1: ~75% of N, P, K available. Weeks months.
 - Years 2 & 3: ~10% of nutrients available

Sustainable application rates

Soil Testing Tips: Start with Routine Test

Why?

- Monitor nutrients (P & K) to only add what's needed and avoid excessive levels
- Monitor salinity and pH critical for plant growth
- Know your texture

Diagnose problem – many problems look the same by eye

When?

- Best done prior to planting, especially in new landscapes
- Resample every 2-3 years to monitor soil environment

General Nitrogen (N) needs by crop intensity

- Low intensity vegetables (pea, bean).
 1-2 lb N/1000 sq. ft (1.5-3 oz/100 sq. ft):
- Medium intensity vegetables (most vegetables). 2-4 lb N/1000 sq. ft (3-6 oz/100 sq. ft)
- High intensity vegetables (corn, potato, onion). 4-6 lb N/1000 sq. feet (6-9 oz/100 sq. ft)

Selecting a fertilizer or amendment

- Base on soil test. What nutrients do you need? Nitrogen alone or a "complete" fertilizer?
- Do you need the extras?
- The cost factor
 - The extras in fertilizers increase the cost
 - You pay for TLC in manufacturing and marketing

Sources of nutrients

- Store bought fertilizers and amendments
 - Many options, e.g. 16-16-16 ("all purpose"), 14-14-14 ("balanced"), 5-1-1 to 46-0-0, and everything in between. Also N-only (e.g. 46-0-0), P-only (e.g. 0-46-0), and K-only (e.g. 0-0-62) fertilizers to make your own mix.
 - Inorganic fertilizers (mineral salts of nutrient elements): concentrated. Need less.
 - Organic fertilizers (manures, composts, and other organic materials): dilute need more. Careful.
- Green manures: legumes and other plants grown and used in place that fix atmospheric N.

Organic Nutrient Sources

- Lower nutrient concentration; can add OM.
- Some options: fresh/composted manure, mulches, food wastes, bone/blood meals. Typical N contents:
 - **Very Low**: Kelp products (1-2%); Fish Emulsion (2-5%)
 - Low: Alfalfa meal (5%), Cotton Seed Meal (6%), Soybean Meal (7%)
 - **Medium**: Blood Meal (12%), Fish Meal (10-14%), Feather Meal (14-16%)

Ideal manure = more N, pH $^{\sim}$ 7, lower salinity

Solid Manure	N	P ₂ O ₅	K ₂ O	pН	Salinity
Туре		% -			[dS/m]
Alpaca*	0.4	0.3	0.6	8.3	11
Beef	0.9	0.6	1.1	8.3	8
Biosolids	2.6	2.0	0.2	7.1	6
Chicken	2.0	2.7	1.4	8.0	16
Dairy	0.8	0.5	1.2	8.0	10
Deer*	1.3	0.6	0.0	7.5	1
Goat	0.4	0.5	0.1	8.3	1
Horse	0.7	0.4	1.1	8.7	3
Llama*	0.5	0.4	0.7	8.6	6
Mink	1.7	4.8	0.5	7.6	6
Rabbit*	2.3	1.1	0.4	7.6	1
Sheep	1.0	0.5	1.0	8.3	7
Turkey	3.1	2.9	1.7	7.7	10

https://digitalcommons.usu.edu/extension_curall/2047/

Potential limitations on organic fertilizer sources

- N content determine "agronomic rates". Soluble N?
- Harder to find sources with low P and K (especially for erosion-prone soils, sensitive watersheds).
- Salt content some sources "hotter" than others
- Weed seeds generally only un-composted sources
- Woody/fibrous potential N immobilization, needs N supplement
- Increase soil organic matter, but be mindful of salt content and excessive buildup of some nutrients

Calculating the fertilizer rate

- The soil test says you need 2 lbs nitrogen/1000 square feet for a garden
- How much 46-0-0 fertilizer is that?
 - Answer: ~4 lbs of 46-0-0/1000 sq ft.
- How much 12-0-0 fertilizer would you need if used instead?
 - Answer: ~17 lbs of 12-0-0 (more because it is less concentrated)

lbs of nutrient recommended by soil test

Summary

- The soil is a plant nutrient BANK.
 Primary macronutrients need to be replenished.
- Soil test to get a baseline find out what you need. If you only need N, choose options with low/no P & K.
- Read the back on the fertilizer/ amendment label. <u>Don't overapply</u>
 happens a lot in urban soils with

"natural" or organic management.

Thank you! (please fill out my eval)

Dr. Melanie Stock

Soil nutrients of special concern in UT

- Usually Nitrogen needs to be added each year, but not always P or K.
- Potassium and Calcium (K and Ca) tend to be naturally high in UT soil.
- Iron (Fe) is abundant in soil, but plants can be deficient when soil pH is high: use chelated Iron (EDTA < DTPA < EDDHA)

