Soil Salinity and pH: What Are They and Why/How Do We Measure Them?

Grant E. Cardon Extension Soils – Utah State University

What are SALINITY and pH?

- SALINITY
 - Refers to the concentration of soluble mineral ions in solution
 - As minerals weather and dissolve over time, they release ions:
 Cations (positive) and Anions (negative)

Salts Dissolve – Release Ions

 $\begin{tabular}{l} \hline Salts: \\ CaSO_4 (gypsum) \\ Na_2SO_4 (glauber's) \\ MgSO_4 (epsom) \\ NaCl (table salt) \\ KCl (Muriate of Potash) \\ CaCl_2 \\ MgCl_2 \end{tabular}$

Cl Na⁺ Na⁺ Na^+ K^+ K^+ Mg^{+2} Ca^{+2} Mg^{+2} Cl SO_{4}^{-2} K^+ Ca⁺² Cl- Ca^{+2} Ca^{+2} Na⁺ SO_4^{-2} SO_4^{-2}

What are SALINITY and pH?

- SALINITY
 - As water is Evapo-transpired over time, the ions can concentrate (especially in semi-arid areas)
 - Water molecule is also charged (has both positive and negative poles)
 - Excessive solute ion concentration can reduce the free energy of the water, reducing the ability of the plant to take it up.
 - Referred to as "Chemical Drought"

3

Ca⁺² Na+ Na+

- SALINITY
 - o "Chemical Drought"
 - Symptoms (stunting, reduced vigor, wilting leaves, leaf margin burn and necrosis)

- SALINITY
 - Refers to the concentration of soluble mineral ions in solution
 - Measured as the Electrical Conductivity (EC) of the soil solution, or irrigation water

Measuring EC: Simple Conductivity Measurement

6

Plant Tolerance to Salinity

		Yield loss		
Сгор	Threshold value	10%	25%	50%
		EC _e (dS/m)		
Apple	1.7	2.3	3.3	4.8
Almond	1.5	2.0	2.8	4.1
Apricot	1.5	2.0	2.6	3.7
Blackberry	1.0	2.0	2.6	3.8
Boysenberry	1.3	2.0	3.0	4.0
Cherries, Sweet and Tart	0.9	1.9	2.2	3.1
Grape	1.5	2.5	4.1	6.7
Nectarines	1.6	2.0	2.6	3.7
Peach	1.7	2.2	2.9	4.1
Pear	1.7	2.3	3.3	4.8
Pecan	1.9	2.5	3.5	4.9
Plum	1.5	2.1	2.9	4.3
Raspberry	1.0	1.4	2.1	3.2
Strawberry	1.0	1.3	1.8	2.5
Walnut	1.7	2.3	3.3	4.8

Salt injury progression

Soil vs Irrigation Water Salinity

• pH

• Refers to the concentration (activity) of Hydrogen (H+) in solution vs Hydroxide (OH-)

- Acidity/Alkalinity
- More H+ = acidic
- More OH- = basic or alkaline
- Measured as the -log(H+) in solution on a scale of 1 to 14 (7 is mid-scale, or neutral)
 - Remember water H2O (or H-OH) small amount of water splits half/half, so the H+ activity of pure water is balanced, or neutral.
 - o "Low" pH is smaller numbers acidic below 7
 - o "High" pH is larger numbers alkaline above 7
 - \circ Every whole number step is 10x change (above or below) the previous value

• pH

- o Don't confuse ALKALINE with ALKALI
 - Alkaline = "high" pH, above 7 on pH scale
 - Alkali = archaic term referring to salts in the soil
- pH controls the solubility of minerals in the soil (some minerals more soluble in acidic conditions, some in basic conditions

Salinity and pH: Effects on Plant Nutrient Availability and Uptake

Grant E. Cardon USU Extension Soils Specialist

13

Cl-Na⁺ \mathbf{K}^+ Cl-Na⁺ Mg^{+2} \mathbf{K}^+ SO_4^{-2} Cl Ca^{+2} Ca^{+2} Na⁺ Na⁺ SO_4^{-2} SO_{4}^{-2}

Ca⁺² Na+ Na+

Uptake Competition

Nutrient Precipitation Effect

Calcium deficiency in greenhouse experiment at high salinity conditions

Problem of scale to change pH

- High soil lime (CaCO3) content
 - As it dissolves with acid application, produces CO3 which reacts almost immediately with H+ to produce CO2(g) and H2O (water) – Acid is consumed and pH remains constant
 - Leaves additional Ca in soil which can react with other nutrients or simply increase solute concentrations
 - All lime would have to be dissolved before pH will begin to drop
 - Soils in Utah contain 15-40% lime by weight, or 300-800 tons of lime per acre (upper foot)

Reaction

https://youtu.be/IvyIkmf9WVY

- Reduce salinity through "washing" or leaching solutes out of the soil
- Don't over-apply fertilizers (mineral salts of nutrients)
- Manage soil moisture at optimum levels (reduces concentrations, potential reduction in water uptake and salt precipitation)
- Better to apply chelated or foliar forms of nutrients (e.g., Fe, Zn, K) if soil pH conditions causing issues with uptake, than trying to regulate soil pH
 - Except in low lime conditions, coarse/rocky soils may be opportunity to slightly lower pH
 - Acid injection in drip irrigationSulfur burners
- Well water high in Bicarbonate or Carbonate can be acid treated to remove these compounds and reduce their activity in the soil

