

Understanding your Irrigation System

March 1, 2021 Urban and Small Farm Conference

By Mike Pace, USU Extension – Box Elder County

EXTENSION **%**

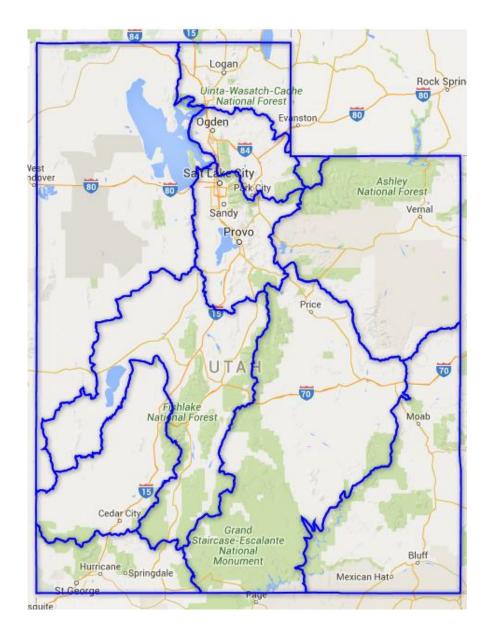
EXTENSION.USU.EDU

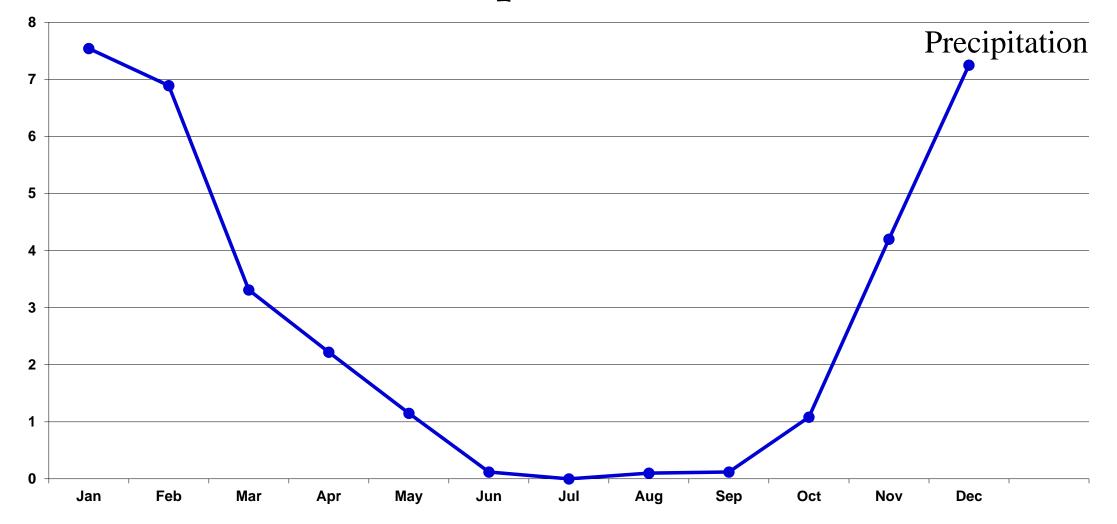
UtahStateUniversity_

Todays Outline

Determining how much water is needed weekly?

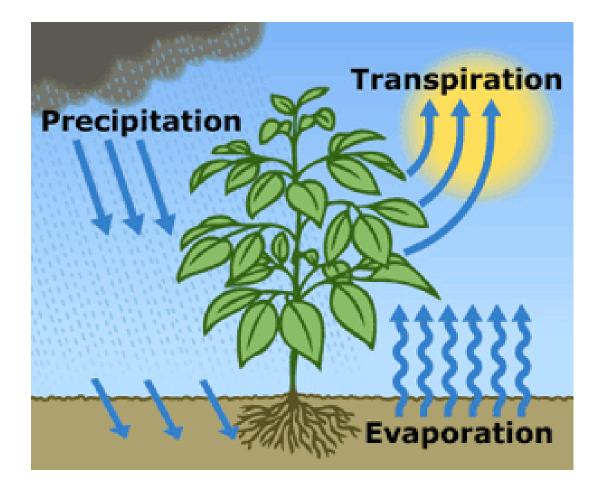
How much water are we applying each time we irrigate?


How uniform is my application?

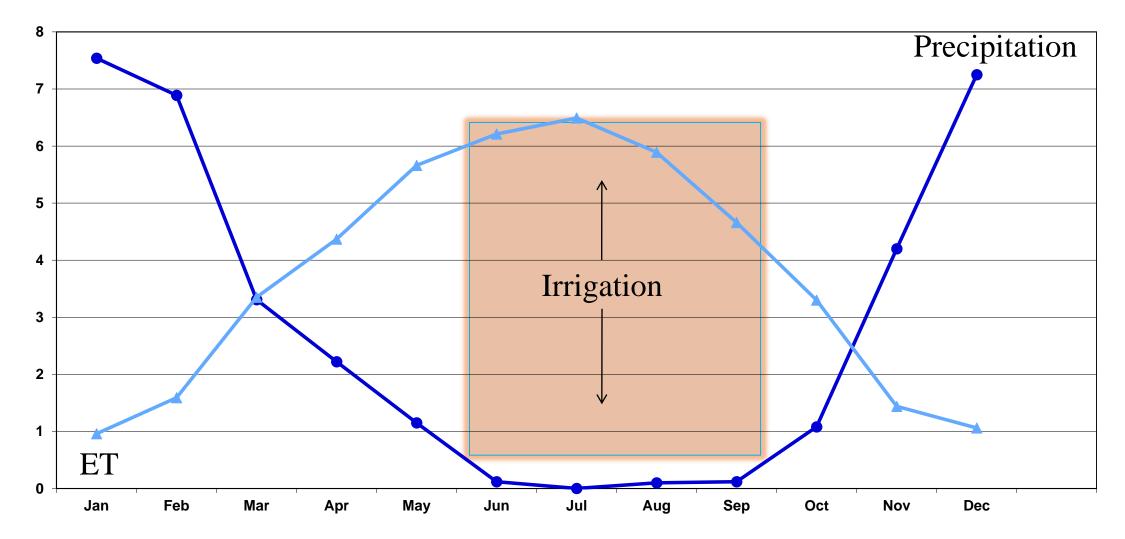


Utah and Water

- \square 2nd driest state
- 13" average annual precipitation
- Most in the form of snow
 in the winter
- Summer deficit


Precipitation and ET

Evapotranspiration (ET)


Water loss from farm due to weather and plant factors

- Evaporation from soil and plant surfaces
- Transpiration by plants (people sweat, plants transpire)
- ET = a reference point for plant water use based on a cool season grass 4-6" tall

http://water.usgs.gov/edu

Irrigation and ET

How is ET calculated? Weather Stations

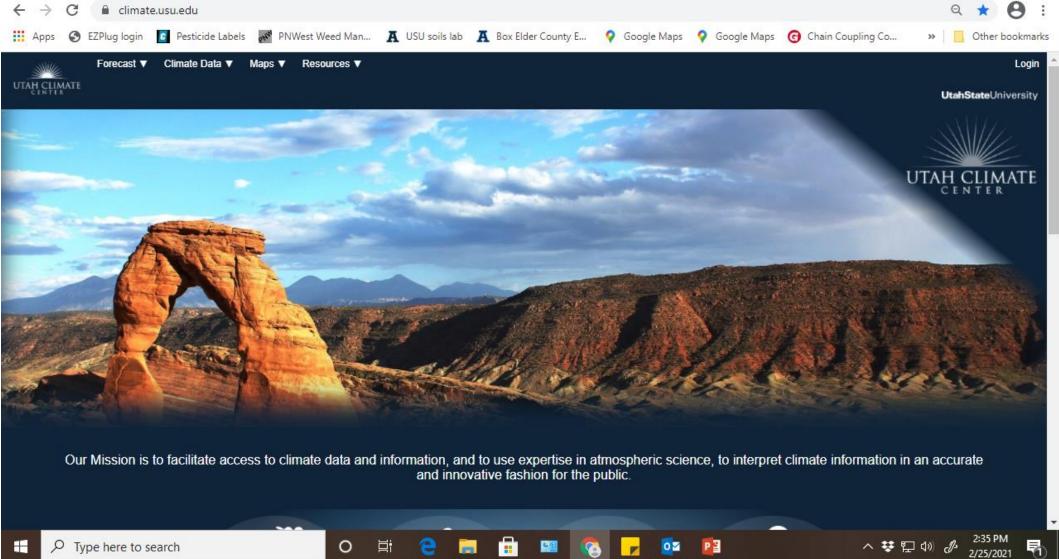
Wind direction Humidity Solar power panel

Wind speed

Solar input

High & low temperature

Soil temp

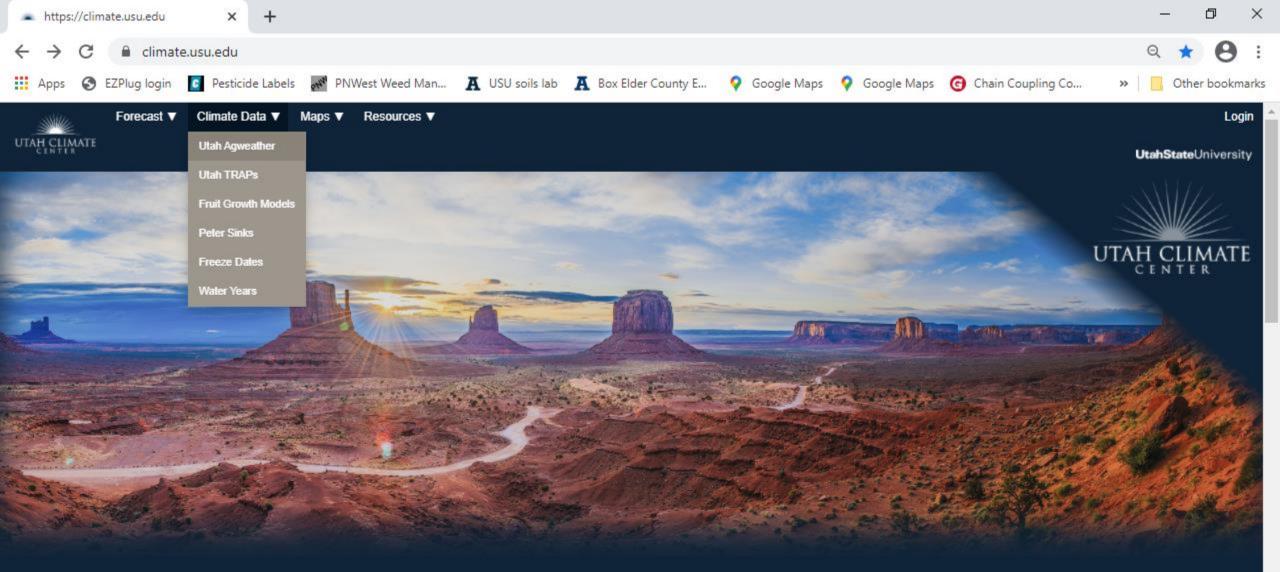

Rain fall

https://www.orchardandvine.net/topics/orchard/

Where to find ET information?

Google "Utah Climate Center" or Climate.usu.edu

0



PE

P Type here to search

Utah Climate Center

	ord: 1948-	2016	Elevat	Mor ion: 4225.0	nthiv Total R	Reference Ev	Y INTL AP, vapotranspir	ation in incl	nes atitude: 40.	nce Evapotranspiration in inches Latitude: 40.7781					
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annu		
1992	0.76	1.50	2.89	4.66	6.30	7.16	7.60	7.07	4.74	2.90	1.03	0.71	47.3		
1993	0.70	0.94	2.40	3.55	5.82	5.98	7.02	6.61	4.66	2.60	1.22	0.85	42.3		
1994	1.06	1.30	2.86	3.90	6.08	7.81	8.73	7.49	5.01	2.49	0.98	0.76	48.4		
1995	0.93	1.75	2.60	3.53	4.75	6.24	7.91	7.19	4.84	2.81	1.63	0.98	45.1		
1996	0.94	1.28	2.79	3.94	5.51	7.73	8.35	7.43	4.51	2.89	1.43	0.87	47.6		
1997	0.90	1.21	3.00	3.70	6.18	6.69	7.67	6.94	4.53	2.87	1.43	0.70	45.8		
1998	1.12	1.19	2.33	3.32	5.17	5.64	7.75	6.79	4.45	2.39	1.35	0.78	42.2		
1999	0.99	1.42	2.80	3.18	4.99	6.59	7.80	6.52	4.40	3.06	1.69	0.79	44.2		
2000	0.97	1.47	2.43	4.23	5.78	7.14	8.25	6.84	4.27	2.48	0.84	0.74	45.4		
2001	0.66	1.14	2.56	3.58	6.11	7.12	7.87	6.98	4.98	2.86	1.36	0.60	45.8		
2002	0.72	1.02	2.27	3.92	5.79	7.33	8.36	6.91	4.28	2.42	1.20	0.89	45.1		
2003	1.18	1.12	2.53	3.64	5.79	6.87	8.60	6.75	4.54	3.14	0.96	0.81	45.9		
2004	0.53	0.86	2.99	3.78	5.45	6.80	7.78	6.45	4.51	2.48	1.15	0.79	43.5		
2005	0.81	1.24	2.40	3.68	5.36	6.39	8.33	6.75	4.59	2.68	1.27	0.80	44.3		
2006	0.92	1.30	2.26	3.98	5.94	7.48	8.30	6.72	4.39	2.46	1.37	0.77	45.8		
2007	0.66	1.34	2.85	3.98	6.25	7.65	8.40	6.95	4.68	2.61	1.49	0.62	47.4		
2008	0.66	1.25	2.35	3.66	5.40	7.01	8.20	7.02	4.57	2.68	1.30	0.75	44.8		
2009	0.85	1.30	2.46	3.52	5.77	6.16	7.88	6.90	4.93	2.31	1.44	0.52	44.0		
2010	0.77	1.21	2.50	3.61	4.70	6.65	7.91	6.73	5.10	2.79	1.15	0.73	43.8		
2011	0.69	1.19	2.36	3.00	4.49	6.39	7.33	6.95	4.72	2.72	1.25	0.77	41.8		
2012	1.02	1.35	2.98	4.34	5.76	7.68	7.90	6.98	4.76	2.83	1.48	0.78	47.8		
2013	0.49	0.94	2.62	3.58	5.85	7.81	8.24	6.94	4.33	2.57	1.45	0.59	45.4		
2014	0.85	1.53	2.89	3.96	5.70	6.83	7.95	6.20	4.59	3.04	1.35	0.94	45.8		
2015	0.95	1.65	3.21	4.00	4.83	7.57	7.24	6.63	4.73	2.87	1.28	0.80	45.7		
2016	0.73	1.41	2.68		-	-	-	-	-	-	-	-			
Average*	0.81	1.27	2.51	3.78	5.64	7.02	8.09	6.94	4.68	2.78	1.31	0.76	45.5		

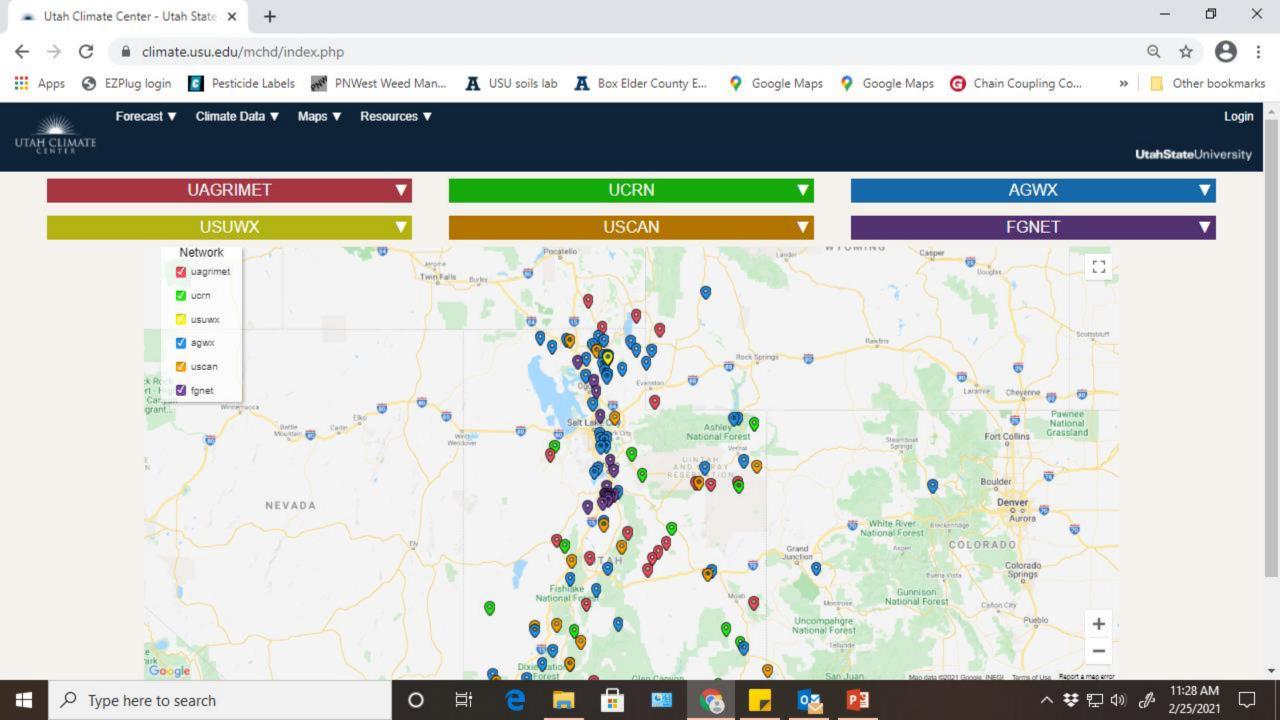
Our Mission is to facilitate access to climate data and information, and to use expertise in atmospheric science, to interpret climate information in an accurate and innovative fashion for the public.

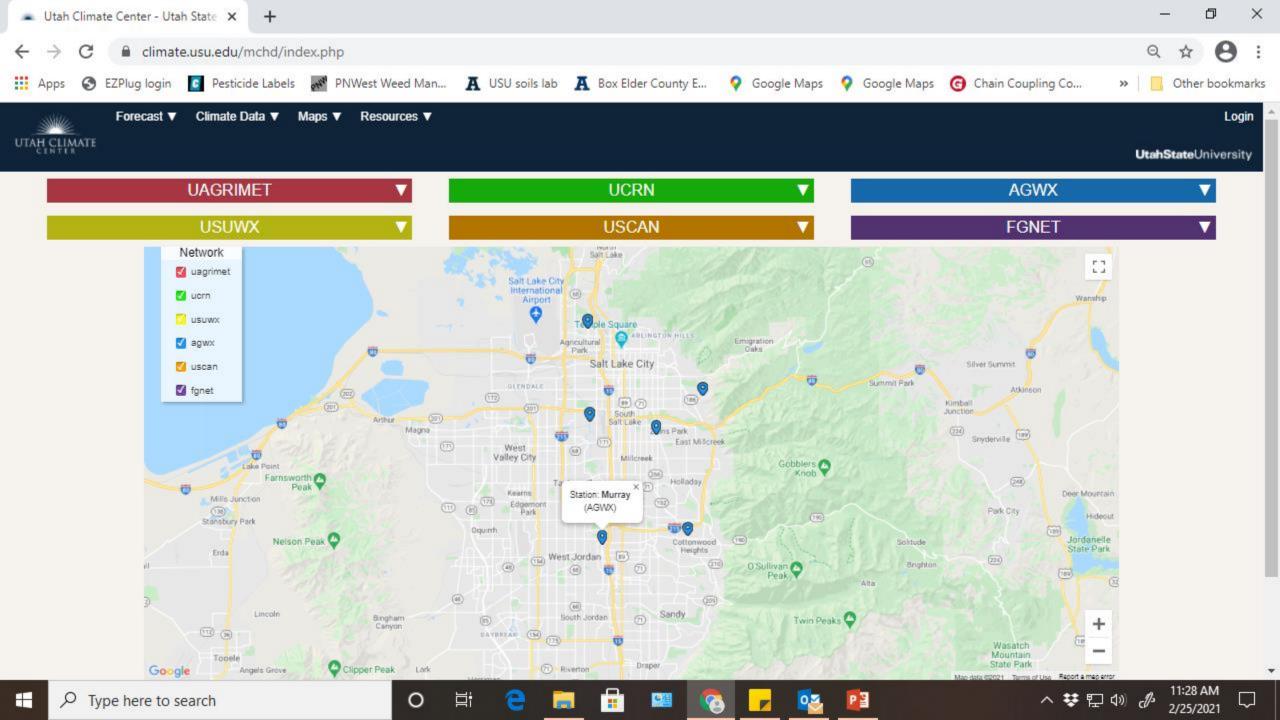
.

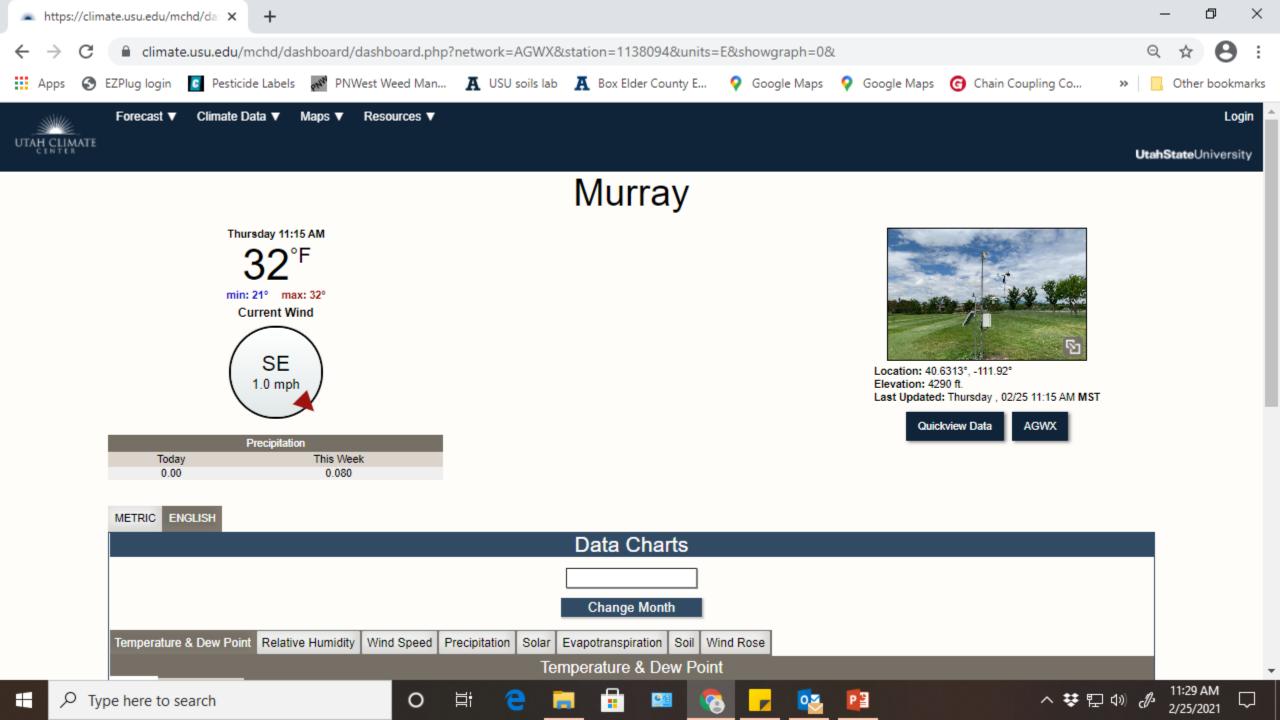
0

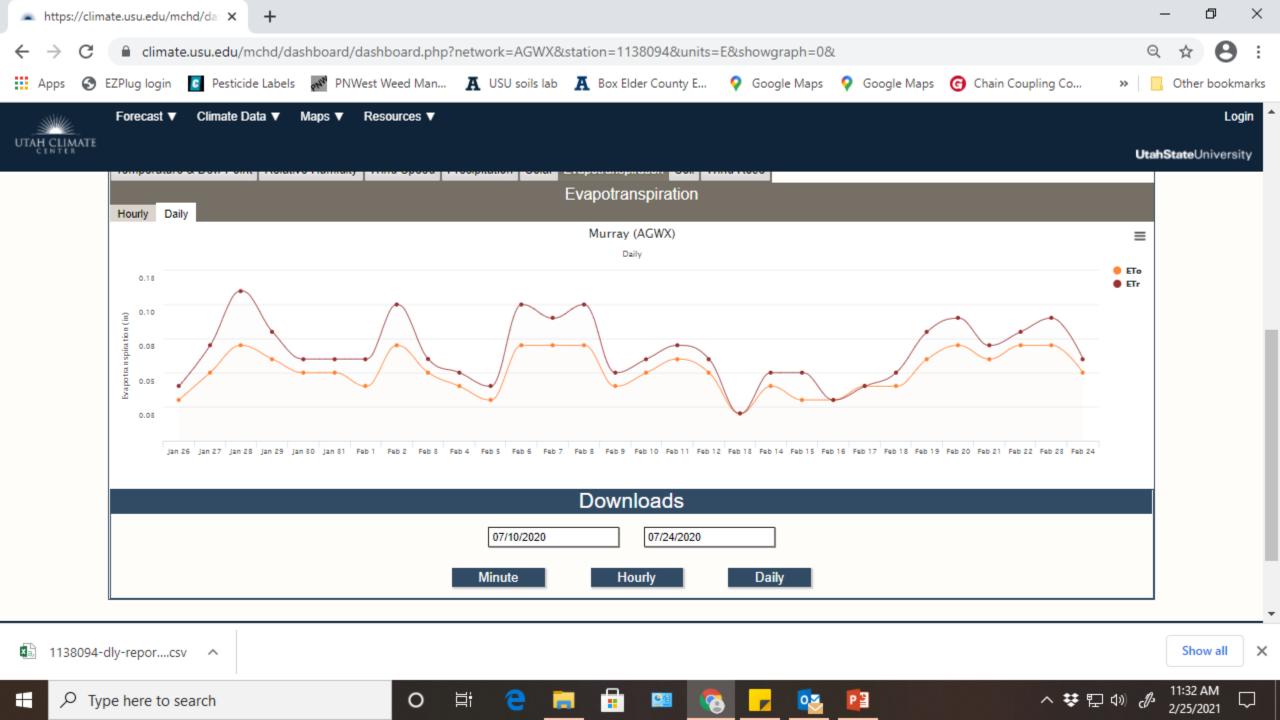
넑

11:27 AM


2/25/2021


へ 袋 記 🖤 🧷


P 🛓


https://climate.usu.edu/mchd/index.php

Type here to search

хI	E 5. C.	đ ÷						1138094	-dly-report-1	614278042	- Excel		-	-			?	A	θ×
FIL	E HOME	INSERT	PAGE LAYO	UT FOF	RMULAS	DATA	REVIEW	VIEW	ADD-INS	ACROBAT	-							Mike Pac	e • 0
Past	Calibri		11 • A	<u>^</u>	= _ ~		/rap Text lerge & Cent		neral	▼ .00 0.00 .00 →0	Conditional			sert Delete	Format	∑ AutoSum ▼ Fill →	▼ AZT Sort &	Find &	
*	*			-						F	ormatting		Styles ▼	* *	-	🧶 Clear 🔻	Filter ▼	Select *	
Clip	oard 🖫	Font		Tai l		Alignment		E.	Number	Ea l		Styles		Cells			Editing		~
A1	· ·	XV	f_x a	date_time															^
	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S 🔺
1 (late_time	station_id	eto	etr	ea_avg	rh_max	rh_min	td_avg	td_max	td_min	td_tmn	td_tmx	solarmj	airt_avg	airt_max	airt_min	airt_tmn	airt_tmx	eto_7
2	7/1/2020 23:59	1138094	0.26	0.32	0.791	84.5	10	37.7	52.2	23.9	01JUL202	20 01JUL202	0 28.	7 70.8	8 87.	9 50	01JUL202	0 01JUL2020)
3	7/2/2020 23:59	1138094	0.31	0.41	0.801	76.4	9.7	37.8	52.3	25.2	02JUL202	20 02JUL202	0 31.3	3 77.6	j 90.	6 56.9	02JUL202	002JUL2020)
4	7/3/2020 23:59	1138094	0.31	0.41	0.95	69.5	14.8	43	52.1	35.5	03JUL202	20 03JUL202	0 29.8	3 79.8	93.	2 61.9	03JUL202	0 03JUL2020)
5	7/4/2020 23:59	1138094	0.31	0.41	1.022	57.2	11.1	44.9	52.9	31.6	04JUL202	20 04JUL202	0 30.7	7 81.5	94.	7 65.7	04JUL202	0 04JUL2020)
6	7/5/2020 23:59	1138094	0.26	0.31	1.083	79.3	16.4	46.4	55.4	36.8	05JUL202	20 05JUL202	0 30.0	5 76.3	89.	6 59.2	05JUL202	0 05JUL2020	1
7	7/6/2020 23:59	1138094	0.27	0.33	1.035	76.8	10.2	45.1	56.4	29.4	06JUL202	20 06JUL202	0 30.9	78.3	95.	8 57.5	06JUL202	0 06JUL2020	1
8	7/7/2020 23:59	1138094	0.33	0.44	0.68	49.7	9.8	34.4	48.5	23.6	07JUL202	20 07JUL202	0 30.8	80.5	87.	6 63.1	07JUL202	0 07JUL2020	1
9	7/8/2020 23:59	1138094	0.24	0.3	1.047	77.2	19.9	45.9	52.8	37.9	08JUL202	20 08JUL202	0 29.8	3 72.4	84.	7 57	08JUL202	0 08JUL2020)
10	7/9/2020 23:59	1138094	0.27	0.34	0.872	77.8	7.2	40.2	52.1	20	09JUL202	20 09JUL202	0 30.2	2 76.4	93.	8 55.1	09JUL202	0 09JUL2020	1
11	7/10/2020 23:59	1138094	0.3	0.38	0.711	55.4	9.3	35.3	51.7	22.3	10JUL202	20 10JUL202	0 30.:	l 81.1	. 90.	4 66.1	10JUL202	0 10JUL2020	1
12	7/11/2020 23:59	1138094	0.26	0.32	1.011	73.5	12.1	44.9	55.5	33.4	11JUL202	20 11JUL202	0 30	78.1	. 93.	8 56.4	11JUL202	0 11JUL2020	J
13	7/12/2020 23:59	1138094	0.26	0.33	1.088	66.1	11.7	46.4	57.5	31.8	12JUL202	20 12JUL202	0 28.0	5 81.6	93.	2 65.9	12JUL202	0 12JUL2020	J
14	7/13/2020 23:59	1138094	0.26	0.33	1.065	68.9	13	45.6	57.9	30	13JUL202	20 13JUL202	0 29	9 77	87.	8 62.5	13JUL202	0 13JUL2020	J
15	7/14/2020 23:59	1138094	0.26	0.33	0.959	74.3	12.4	43.2	53.3	21.1	14JUL202	20 14JUL202	0 29.2	2 74.1	. 84.	4 59.9	14JUL202	0 14JUL2020	J
16	7/15/2020 23:59	1138094	0.25	0.31	1.005	77	16.2	44.5	54.3	35.5	15JUL202	20 15JUL202	0 29.7	7 74.6	i 8	7 57.9	15JUL202	0 15JUL2020	J
17	7/16/2020 23:59	1138094	0.26	0.33	0.986	70.8	12.6	44	54.7	35.7	16JUL202	20 16JUL202	0 27.5	5 78.9	95.	7 58.4	16JUL202	0 16JUL2020	J
18	7/17/2020 23:59	1138094	0.29	0.39	0.934	58.7	9.1	42.2	54	28.8	17JUL202	20 17JUL202	0 28.2	2 85.5	98.	6 68.4	17JUL202	0 17JUL2020	1
19	7/18/2020 23:59	1138094	0.26	0.32	1.059	61.9	16.5	45.5	55.9	37.9	18JUL202	20 18JUL202	0 29.2	2 82.8	92.	1 68.1	18JUL202	0 18JUL2020	J 🔍
) 113	8094-dly-re	port-16142	78042	+														•
READ	Υ														Ħ				+ 100%
-	✓ Type h	ere to sear	ch			0	Ħ C		•	<u>9</u>	ò 🔽	•	2	×∃		^ ₩	፲ 🕬 🖑	11:35 AM 2/25/2021	

ET data from Utah Climate Center – July 2020

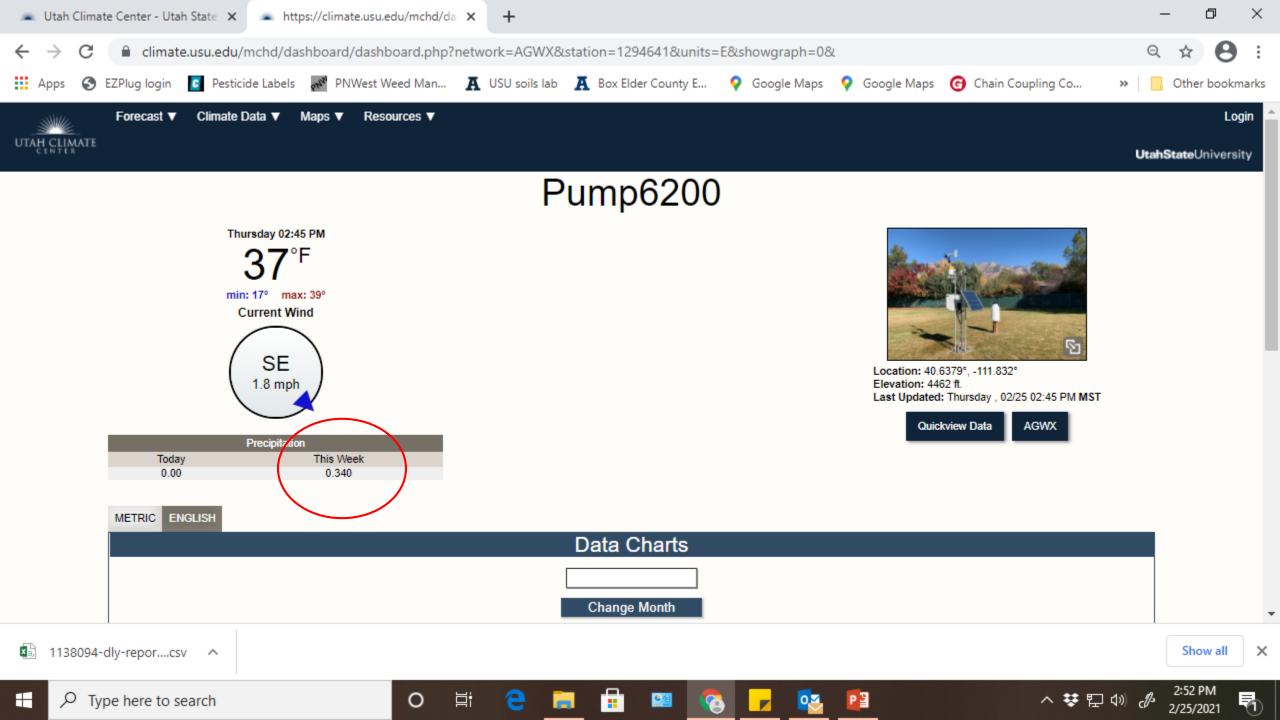
July 1-7, 2020

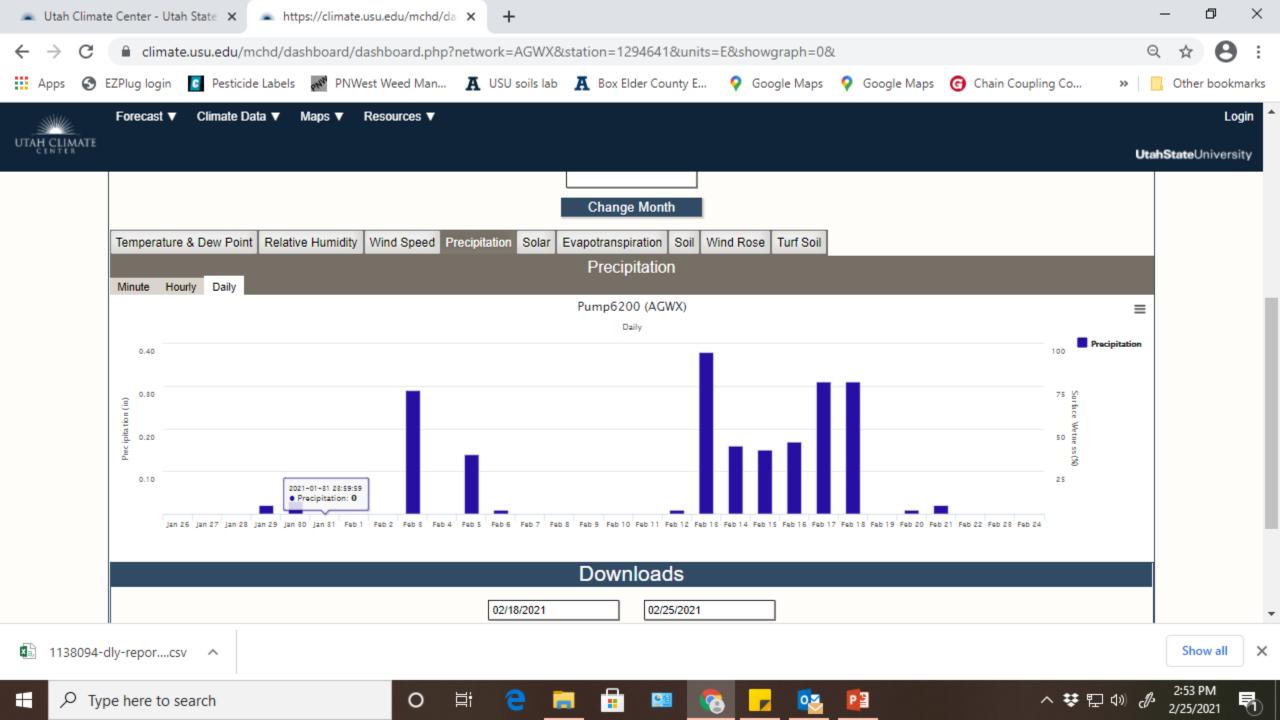
date_time	e <u>to</u>	etr
7/1/2020 23:59	0.26	0.32
7/2/2020 23:59	0.31	0.41
7/3/2020 23:59	0.31	0.41
7/4/2020 23:59	0.31	0.41
7/5/2020 23:59	0.26	0.31
7/6/2020 23:59	0.27	0.33
7/7/2020 23:59	0.33	0.44

2.05 2.63

eto 2.05 / 7 days = 0.29 inch per day etr 2.63 / 7 days = 0.37 inch per day

July 2020


Date – time	eto	etr
7/26/2020 23:59	0.24	0.30
7/27/2020 23:59	0.23	0.28
7/28/2020 23:59	0.25	0.31
7/29/2020 23:59	0.24	0.29
7/30/2020 23:59	0.24	0.29
7/31/2020 23:59	0.27	0.34
Total	8.01	10.13


eto July total 8.01 / 31 days = 0.26 etr July total 10.13 / 31 days = 0.32 24 year average for July = 8.09

Seasonal Affects and ET

Month	inches/month	inches/day
April	3.78	.13
May	5.69	.19
June	7.02	.24
July	8.09	.27
August	6.94	.23
September	4.69	.16
October	2.78	.10

* ET changes with temperature changes

https://health.wusf.usf.edu/health-news-florida

Which system is best for me?

https://fdp.com.pk/

https://www.123rf.com/

EXTENSION.USU.EDU

https://www.agrotechnomarket.com/2016/10/furrow-irrigation-for-vegetable-garden.html

How much water am I applying?

□ Nozzle size □ Pressure (psi) □ In row and between row spacing

EXTENSION.USU.EDU

Figuring impact sprinkler application rates

NOZZLE DISCHARGE – GALLONS PER MINUTE Nozzle Diameter in Inches 3/32 1/85/32 11/64 13/64 7/32 PSI 9/64 3/16 20 1.17 2.09 3.26 3.92 4.69 5.51 6.37 2.65 25 1.31 2.34 2.96 3.64 4.38 6.16 7.13 5.25 30 1.44 2.56 3.26 4.01 4.83 5.75 6.80 7.86 35 1.55 2.77 3.50 4.31 5.18 6.21 7.30 8.43 **40** 1.66 2.96 3.74 4.61 5.54 6.64 7.80 9.02 45 1.76 3.13 3.99 4.91 7.03 5.91 8.30 9.60 1.85 3.30 50 4.18 5.15 6.19 7.41 8.71 10.10 55 1.94 3.46 4.37 5.39 6.48 7.77 9.12 10.50 60 2.03 3.62 4.50 5.65 6.80 8.12 9.56 11.05 65 2.11 3.77 4.76 5.87 7.06 8.45 9.92 11.45 70 2.19 3.91 4.96 6.10 7.34 8.78 10.32 11.95 75 2.27 4.05 5.12 6.30 10.66 12.32 7.58 9.08 80 2.35 4.18 5.29 6.52 7.84 9.39 11.02 12.74 85 2.42 4.31 6.71 8.07 13.11 5.45 9.67 11.35 2.49 13.51 90 4.43 5.61 6.91 8.31 9.95 11.69 95 2.56 7.09 13.86 4.56 5.76 8.53 10.2 11.99 100 2.63 4.67 5.91 7.29 8.76 10.5 12.32 14.23

EXTENSION.USU.EDU

Sprinkler Application Rates In./hr.=96.24 *gallons per minute(gpm)/area (ft^2) Efficiencies (70-80 percent)

AVERAGE APPLICATION RATE – INCHES PER HOUR

Gallons Per Minute From Each Sprinkler

Spacing										
Feet	2 gpm	3 gpm	4 gpm	5 gpm	6 gpm	7 gpm	8 gpm	9 gpm	10 gpm	12 gpm
20x20	.48	.72	.96	1.20	1.44	1.70	1.93	2.16	2.40	
20x30	.32	.48	.64	.80	.96	1.12	1.28	1.43	1.60	1.93
30x40	.24	.36	.48	.60	.72	.84	.96	1.08	1.20	1.45
30x30	.21	.32	.43	.54	.64	.75	.88	.96	1.07	1.28
30x40	.16	.24	.32	.40	.48	.56	.64	.72	.80	.95
30x50	.13	.19	.25	.32	.38	.45	.51	.58	.64	.76
40x40	.12	.18	.24	.30	.36	.42	.48	.54	.60	.72
40x50	.10	.14	.19	.24	.29	.34	.38	.43	.48	.58
40x60		.12	.16	.20	.24	.28	.32	.36	.40	.48

July 1-7, 2020

date_time	eto	etr
7/1/2020 23:59	0.26	0.32
7/2/2020 23:59	0.31	0.41
7/3/2020 23:59	0.31	0.41
7/4/2020 23:59	0.31	0.41
7/5/2020 23:59	0.26	0.31
7/6/2020 23:59	0.27	0.33
7/7/2020 23:59	0.33	0.44

$$2.05$$
 2.63
 $2.05 / 7 = 0.29$
 $2.63 / 7 = 0.37$

Soil water holding capacity

- Saturation all soil pores are full of water
- Field Capacity

water in macropores after gravity drains (plant available water)

Permanent Wilting Point
 small film of water around soil
 particles (not available to plants)

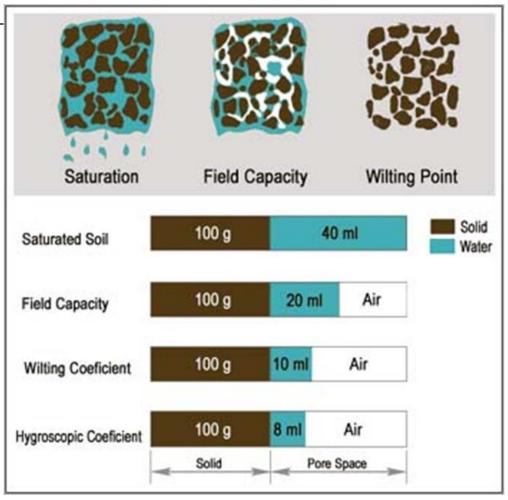
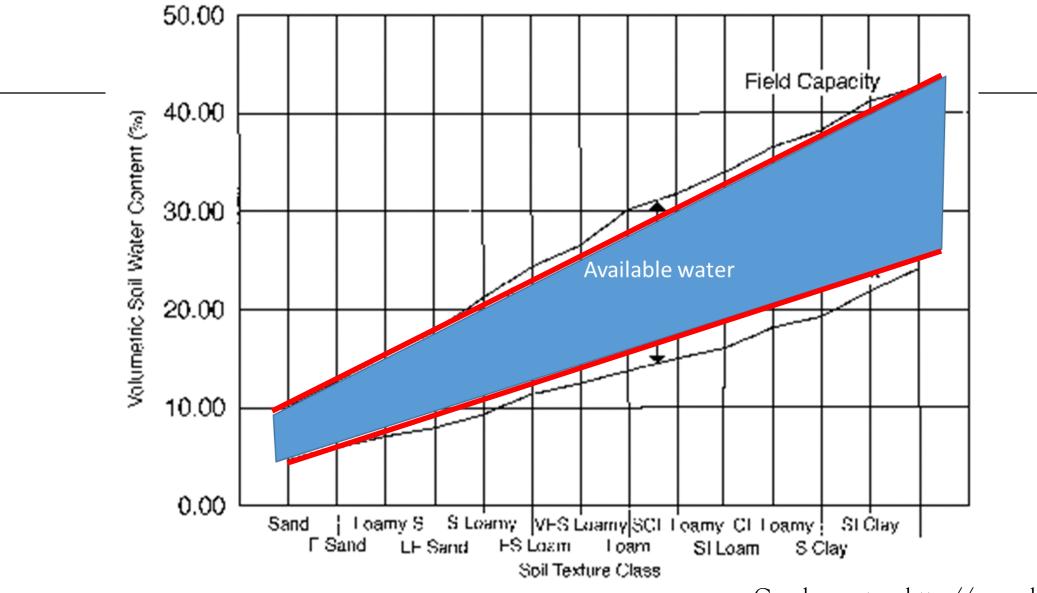
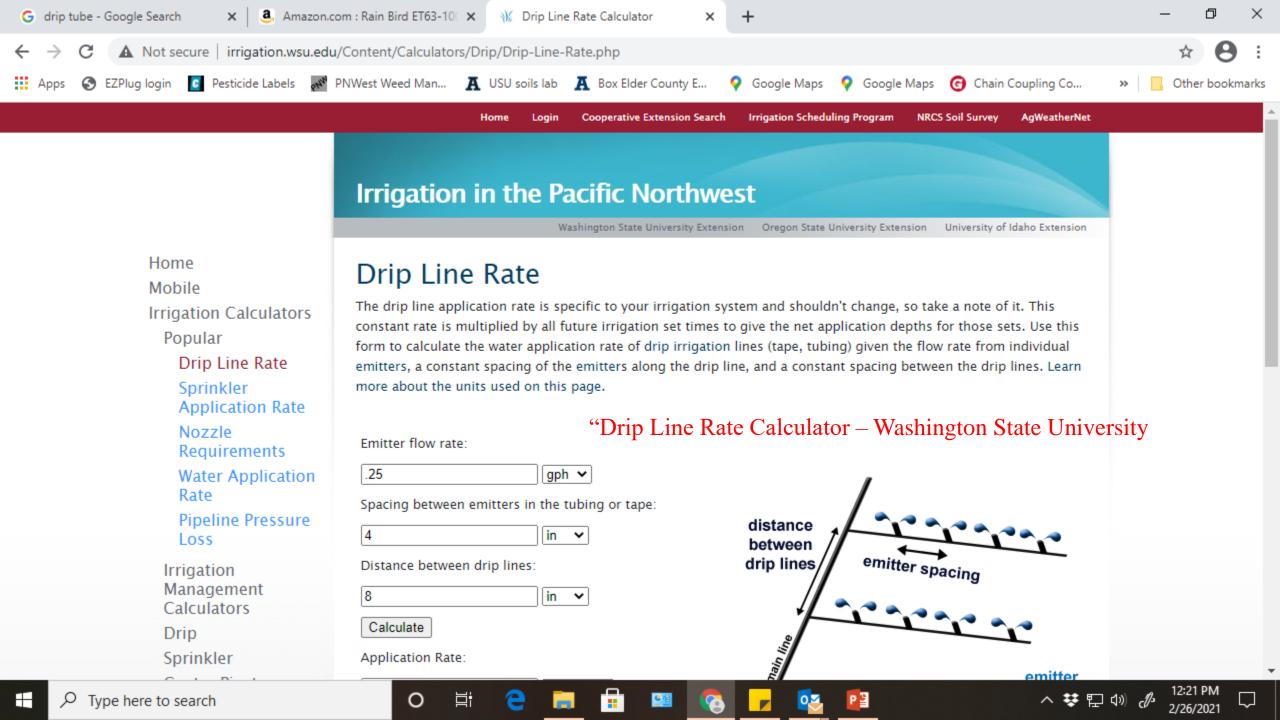



Illustration Courtesy http://www.landfood.ubc.ca/soil200

Available Soil Water vs. Texture

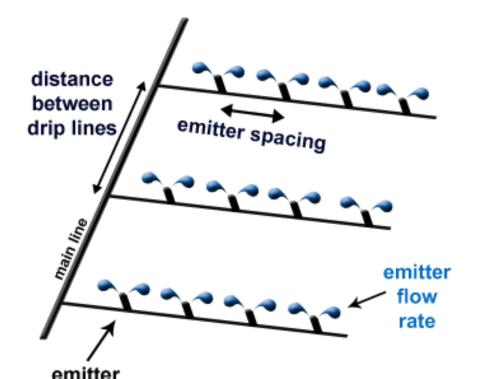
Graph courtesy http://cru.cahe.wsu.edu

Figuring Drip Tape Application Rates



Max. Pressure Diameter Wall Thickness Emitter Spacing Flow Rate Length

15 PSI
5/8"
8 mil
8 inch
0.34 GPM/100'
2,000 Feet



Drip Line Rate

The drip line application rate is specific to your irrigation system and shouldn't change, so take a note of it. This constant rate is multiplied by all future irrigation set times to give the net application depths for those sets. Use this form to calculate the water application rate of drip irrigation lines (tape, tubing) given the flow rate from individual emitters, a constant spacing of the emitters along the drip line, and a constant spacing between the drip lines. Learn more about the units used on this page.

Emitter flow rate:

Spacing between emitte	gpm ❤ gph rsin Iph ng or ta
	<mark>gpm</mark> lps
Distance between drip l	ines:
	in 🗸
Calculate	
Application Rate:	
	in/hr 🗸

Home

Mobile

Irrigation Calculators

Popular

Drip Line Rate

Sprinkler Application Rate

Nozzle Requirements

Water Application Rate

Pipeline Pressure Loss

Irrigation Management Calculators Drip Sprinkler Center Pivot Residential General Design

Calculators

Home

Mobile

Popular

Irrigation Calculators

Drip Line Rate

Requirements

Application Rate

Sprinkler

Nozzle

Drip Line Rate

The drip line application rate is specific to your irrigation system and shouldn't change, so take a note of it. This constant rate is multiplied by all future irrigation set times to give the net application depths for those sets. Use this form to calculate the water application rate of drip irrigation lines (tape, tubing) given the flow rate from individual emitters, a constant spacing of the emitters along the drip line, and a constant spacing between the drip lines. Learn more about the units used on this page.

Emitter flow rate:

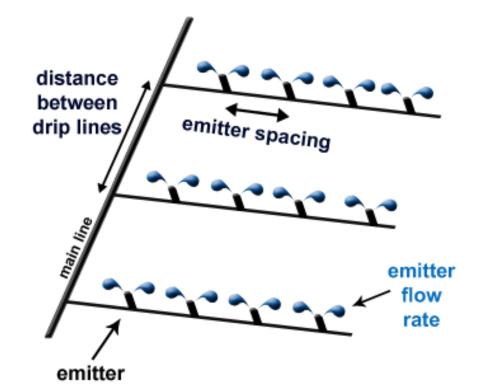
gpm 🗸

in

in

mm cm

m


in/hr

~

ft

in the tubing or tape:

Water Application	
Rate	Spacing between emitters in
Pipeline Pressure	
Loss	
Irrigation	Distance between drip lines:
Management	
Calculators	
Drip	Calculate
Sprinkler	Application Rate:
Center Pivot	
Residential	
General Design	
Calculators	

alculators

e Rate er tion Rate

ments pplication

Pressure

ent rs

vot al Jesign rs

asurement

Drip Line Rate

The drip line application rate is specific to your irrigation system and shouldn't change, so take a note of it. This constant rate is multiplied by all future irrigation set times to give the net application depths for those sets. Use this form to calculate the water application rate of drip irrigation lines (tape, tubing) given the flow rate from individual emitters, a constant spacing of the emitters along the drip line, and a constant spacing between the drip lines. Learn more about the units used on this page.

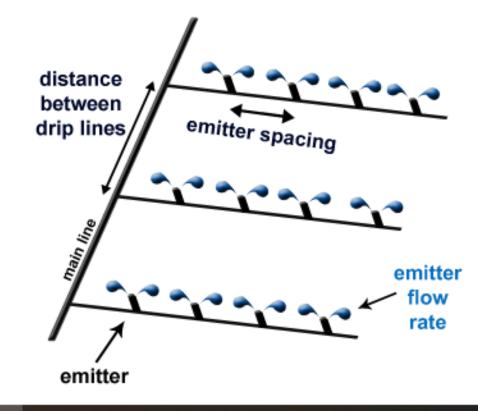
Emitter flow rate:

.20 gpn	.25	gph 🔪
---------	-----	-------

Spacing between emitters in the tubing or tape:

in 🗸

	4			in	~
--	---	--	--	----	---


8	
Calculate	

Distance between drip lines:

Application Rate:

0

12:20 PM

2/26/2021

へ 琴 臣 切り

more about the units used on this page.

Emitter flow rate:

.40 gph 🗸

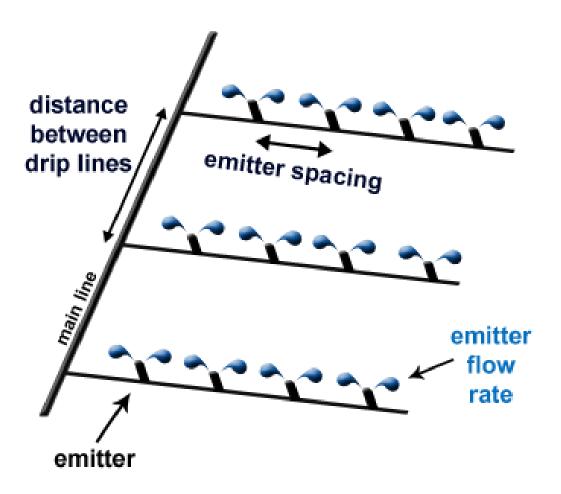
Spacing between emitters in the tubing or tape:

in

 \mathbf{v}

8

Distance between drip lines:


30 in 🗸

Calculate

Application Rate:

0.385

in/hr 🗸 🗸

The Equation

ug login	Pesticide Labels
----------	------------------

12 AN

PNWest Weed Man... 🗛 USU soils lab 🗛 Box Elder County E... ♀ Google Maps ♀ Google Maps 🕝 Chain Coupling Co...

>>

Irrigation Calculators Popular Drip Line Rate

> Sprinkler Application Rate

- Nozzle
- Requirements
- Water Application Rate

Pipeline	Pressure
Loss	

Irrigation
Management
Calculators

Drip

Sprinkler

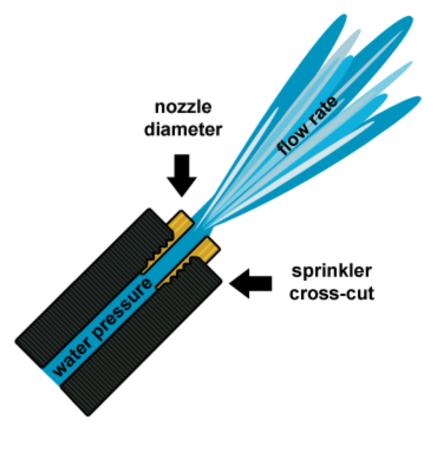
Center Pivot

Residential

General Design

Calculators

Water Measurement Calculators


Chemigation

FAQs & Tutorials Irrigation Decources

Use this first form to determine the effective application rate of sprinklers spaced at uniform distances f	rom each
other. This is particularly applicable to hand-move, or wheel-line, irrigation systems. The pressure is me	easured at
the sprinkler nozzle. The head spacing is the distance between sprinkler heads along the water line, and	l the line
spacing is the distance between lines in the field. If there is just one line being moved and the spray pat	terns overlay,
as is typical for hand-move or wheel-line, then the actual application rate will be lower but the given nu	mber will be
useful to determine set times. Learn more about the units used on this page.	

Nozzle Flow Rate and Effective Application Rate

	in	~
Pressure:		
	psi	~
Head Spacing:		
	ft 🗸	
Line Spacing:		
	ft 🗸	
Sprinkler Efficiency:		
70	%	
Calculate		
Nozzle Flow Rate:		

₩ ty

NUZZIE Requirements Water Application Rate **Pipeline Pressure**

Irrigation Management Calculators

Drip

Sprinkler

Loss

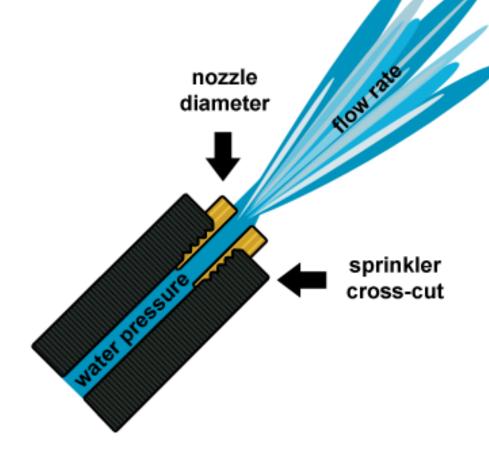
Center Pivot

Residential

General Design Calculators

Water Measurement Calculators

Chemigation


FAQs & Tutorials Irrigation Resources Washington Idaho

Oregon

Nozzle Flow Rate and Effective Application Rate

Nozzle Diameter:

5	32nds in 🖌
Pressure:	
54	psi 🗸
Head Spacing:	
30	ft 🗸
Line Spacing:	
40	ft 🗸
Sprinkler Efficiency:	
70	%
Calculate	
Nozzle Flow Rate:	
5.19	gpm 🗸
Effective Application Rate:	
0.291	in/hr 🗸

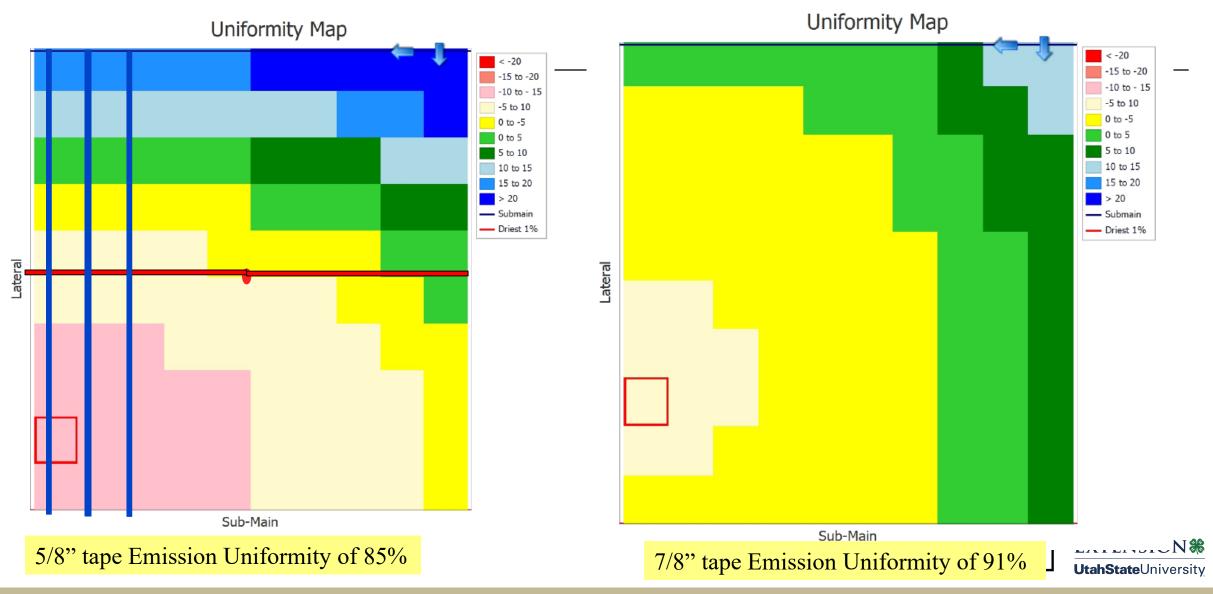
Increasing Uniformity

- Upgrade irrigation system
- Replace sprinklers, gaskets, and fix leaks
- Improve irrigation system uniformity (minimize deep percolation)
- □ Level fields to uniform and proper grade (when practical)
- □ Adjust furrow or border flow rate

EXTENSION.USU.EDU

Increasing Uniformity

- Upgrade irrigation system
- Replace sprinklers, gaskets, and fix leaks
- Improve irrigation system uniformity (minimize deep percolation)


.EDU

https://aboveallsprinklers.co m/

http://ddhranch.com/life-lessons/

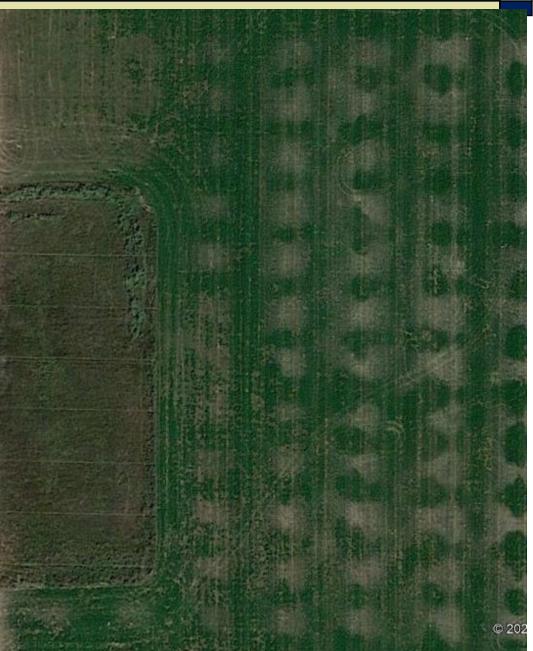
Drip Designs - No design is perfect.

Improving irrigation system uniformity

	Part Number	Spa	cing			Exponent	Requirement
	i al citamber		•	_ g	ph	Exponent	Requirement
	_	in	ст	@ 8 psi	@ 10 psi	-	(micron)
	0.13 gph emitter						
	EAXxx0467	4	10	0.13	0.15		
	EAXxx0644	6	15	0.13	0.15		
	EAXxx0834	8	20	0.13	0.15		
	EAXxx1222	12	30	0.13	0.15	0.5	120 (125)
	EAXxx1617	16	40	0.13	0.15		
	EAXxx1814	18	45	0.13	0.15		
Ē.	EAXxx2411	24	60	0.13	0.15		

Drip Emitter Flow Rate v. Pressure

	Pressure (psi)	discharge (gph)		% change from 8 psi discharge	
-2 psi	6	0.113	87%	-13%	
-1 psi	7	0.122	94%	-6%	
Label	8	0.130	100%	0%	
+1 psi	9	0.138	106%	6%	T
+2 psi	10	0.145	112%	12%	
Range	4	0.033	25%	25%	



Sprinkler Uniformity Test

Flood Irrigation

Conclusion

Know and understand your irrigation system.

Learn how to find the ETo for your area.

- Determine how much water you need to apply based on your irrigation schedule.
- Understand how much water you apply each time you irrigate.
- Test the application uniformity of your system and make the proper adjustments.

UtahStateUniversity

435-695-2541

mike.pace@usu.edu

http://extension.usu.edu/boxelder/