

Managing Soil Moisture for Produce Yield and Quality

Presented by

L. Niel Allen, Irrigation Specialist Utah State University, Extension

March 1, 2021

EXTENSION ***** UtahStateUniversity

EXTENSION.USU.EDU

Saline Soils	USU Lab Sample	Total (mg/L)	Salts (tons/ac-ft)	
	1	18,723	25.5	
	2	17,610	23.9	
	3	467	0.6	
	4	17,940	24.4	- Marceli
	5	18,379	25.0	- Danse
	6	20,612	28.0	and the fell a line of the second and the second and the second and the

Photo taken April 4, 2019 by Niel Allen

Factors affecting produce yield and quality

- Genetics
- Climate
- Disease
- Pests
- Fertility
- Soil moisture

Location of soil moisture sensors (1 through 10)

Each sensor represents a block of soil

Sensor reads soil moisture in % by volume (e.g. depth = % soil moisture * volume / area)

* Not to scale

Measuring Soil Moisture to Estimate ET Water use under the bed is the highest

Average Daily Soil Moisture for Surface Irrigation

Measuring Soil Moisture to Estimate ET

Drip Irrigation (203) Soil moisture at 30 minute intervals

Average Daily Soil Moisture for Drip Irrigation

This does not include all evaporation for soil surface

Soil Pore space (conceptual every soil is different)

Soil-Water-Plant Relationships

Classes and Availability of Soil Water

WP is a function of soil texture, crop, ET rate, soil salinity.

A typical soil will have about 40 percent voids (5 inches per foot at saturation)

Field Capacity – about 3.5 to 4 inches per foot.

Allowable Depletion – about 2.5 to 3 inches per foot. The bank account for shallow rooted vegetables is about 1-1.5 inches

Permanent Wilting Point – about 2" per foot (specific to soils and crops).

EXTENSION.USU.EDU

Soil-Water-Plant Relationships

Available Soil Water

Available Soil Water-Holding Capacity (Typical)

Soil Texture

	inch/inch	inch/foot
Sands and fine sands	0.04 - 0.06	0.5 - 0.7
Very fine sands, loamy sand	0.07 - 0.08	<mark>0.8 - 1.0</mark>
Sandy Loam	0.1 - 0.13	<mark>1.2 - 1.6</mark>
Loam, silt loam	0.16 - 0.17	<mark>1.8 - 2.1</mark>
Silty clay loam	0.16 - 0.17	1.8 - 2.1
Clay loam, sandy clay loam	0.14 - 0.17	1.7 - 2.1

The bank account for shallow rooted vegetables is about 1 to 1.5 inches. Corn, Tomatoes, Squash, etc. can be higher.

Soil Water by Feel

Sandy clay loam, loam, and Silt loam soils

50-75 percent available 1.1-0.4 in./ft. depleted

25-50 percent available 1.6-0.8 in./ft. depleted

75-100 percent available 0.5-0.0 in./ft. depleted

Soil Water by Feel

Sandy loam and Fine sandy loam soils

50-75 percent available 0.9-0.3 in./ft. depleted

25-50 percent available 1.3-0.7 in./ft. depleted

75-100 percent available 0.4-0.0 in./ft. depleted

EXTENSION.USU.EDU

Soil Water Budget Examples for Deficit Irrigation Research (no Water Table)

Daily Average Soil Moisture Panguitch Pasture - Irrigation Level 3 Location SM2 from Acclima TDR 315L Sensors

Onion Yield v. Distance from Inlet

EXTENSION.USU.EDU EXTENSION #

NDVI from Sentinel 2 satellite using OneSoil application

Drip Irrigated Field NDVI, August 9, 2019

Average Daily Soil Moisture for Drip Irrigation

NDVI from Sentinel 2 satellite using OneSoil application

Surface Irrigated Field NDVI August 13, 2019

Average Daily Soil Moisture for Surface Irrigation

NDVI from Sentinel 2 satellite using OneSoil application

Drip Irrigated Field NDVI, August 13, 2020

NDVI from Sentinel 2 satellite using OneSoil application

Surface Irrigated Field NDVI August 13, 2020

Pressure is important to irrigation Uniformity

	Part Number	Spa	cing			Evenenant	Desuisement
	Fait Number		, cing	g	ph	Exponent	Requirement
		in	ст	@ 8 psi	@ 10 psi	-	(micron)
	0.13 gph emitter						
	EAXxx0467	4	10	0.13	0.15		
	EAXxx0644	6	15	0.13	0.15		
	EAXxx0834	8	20	0.13	0.15	_	
	EAXxx1222	12	30	0.13	0.15	0.5	120 (125)
	EAXxx1617	16	40	0.13	0.15	-	
	EAXxx1814	18	45	0.13	0.15		
Ĕ	EAXxx2411	24	60	0.13	0.15		

Drip Emitter Flow Rate v. Pressure

	Pressure (psi)	discharge (gph)	% of 8 psi discharge	% change from 8 psi discharge
-2 psi	6	0.113	87%	-13%
-1 psi	7	0.122	94%	-6%
Label	8	0.130	100%	0%
+1 psi	9	0.138	106%	6%
+2 psi	10	0.145	112%	12%
Range	4	0.033	25%	25%

For Comparison Sprinkler Flow Rate v. Pressure

	Pressure (psi)	discharge (gph)	% of 50 psi discharge	% change from 50 psi discharge
-2 psi	48	6.859	98%	-2%
-1 psi	49	6.930	99%	-1%
Base	50	7.000	100%	0%
+1 psi	51	7.070	101%	1%
+2 psi	52	7.139	102%	2%
Range	4	0.280	4%	4%
				Litels Ctestel

1 psi = 2.31 feet

UtahStateUniversity

Drip Designs I checked were good. No design is perfect.

Irrigation and Yield

Yield sampling of onions

Onion Yield, Count, and Size by Field

Onion size yield and count by field for two irrigation levels

Onion Count and Yield

- Fields 1 and 2 are 2019 fields— Different varieties, planted and harvested on different dates.
- Fields 3, 4, 5 and 6 are 2020 fields – The were all same variety (Hamilton), planted the same week, and harvested about the same time.

EXTENSION.USU.EDU

EXTENSION

UtahStateUniversity

• Fields 2 and 4 where established with drip irrigation and surface irrigated.

My ideas for your consideration (based on limited observation)

- Onion establishment and high population are needed for good yield.
 - Drip irrigation helps provide good establishment
- Surface irrigators do a good job of applying adequate water through high application per irrigation
 - No observed yield reduction from over-irrigation in the surface irrigated fields.
- It is easy to under-irrigate with a drip irrigation system.
- Drip irrigation uniformity, while good can result in under irrigation of some or most of the field.
 - Monitor your crop in a low water delivery location
 - Carefully design your drip irrigation system
 - Remember your fertilizer application through the irrigation system is applied the same as the water.

My ideas for your consideration (based on limited observation)

- Apply about 25 inches or more with a drip system during a dry summer.
 - Surface irrigators are applying 2 to 3 times more water
- For drip irrigation using 0.13 gph emitters at 12-inch spacing irrigate about 16 hours twice each week during June-August (about 2 inches per week).
 - Monitor your field a locations that receive less water average.
 - Use OneSoil Application to check vegetation uniformity.
- The fuel/energy to fully-irrigate with a drip system is only pennies on the dollar compared to under-irrigation.
 - Yield difference 20,000 to over 30,000 lbs./acre in the same field based on irrigation application differences.

Other Consideration

- Some periods are more critical than others
 - For high yield reproductive through harvest for fresh vegetables and fruit
 - Some stress may be used for quality rather than yield (grapes as an example)
- High fertility = large plants = high water use
- Keep soil moisture high to compensate for high salinity
- Soil moisture and fertility can impact flowering v. vegetation.

Questions

KTENSION **%** ahStateUniversity