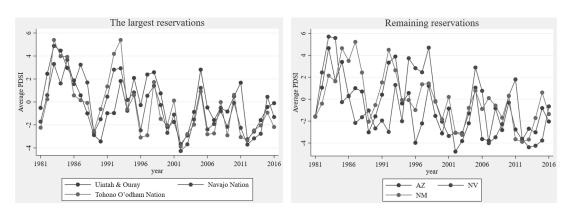


1


Background

- Negative impacts of drought on agriculture
 - Hatfield et al., 2011; Fisher et al., 2012; Kuwayama et al., 2019
 - Crop losses, damage to pasture/range, reduced plant growth
 - · Particularly concerning in arid Southwest

Drought on the Reservations

- Plots contain Palmer Drought Severity Index (PDSI) averaged across counties where a reservation is located
 - PDSI is constructed using temperature and precipitation data
 - PDSI ranges: 0 = normal conditions; >0 = wet conditions; <0 = dry conditions

Percent Area in Drought

Drought	Area*	% Area in Drought		
Intensity		2012	2016	2020
	Navajo Nation	93	77	92
	Tohono O'odham Nation	100	95	47
Abnormally	Uintah & Ouray	96	48	91
dry or worse (D0-D4)	Remaining tribes AZ	99	88	67
(/	Remaining tribes NV	99	82	80
	Remaining tribes NM	97	72	81
	Navajo Nation	47	0	57
Severe	Tohono O'odham Nation	76	2	35
drought or	Uintah & Ouray	62	2	42
worse	Remaining tribes AZ	61	0	46
(D2-D4)	Remaining tribes NV	64	52	27
	Remaining tribes NM	54	0	33

_	**	DO - Abnormally Dry • Short-term dryness slowing planting, growth of crops • Some lingering water deficits • Pastures or crops not fully recovered
	*	D1 - Moderate Drought • Some damage to crops, pastures • Some water shortages developing • Voluntary water-use restrictions requested
	*	D2 - Severe Drought • Crop or pasture loss likely • Water shortages common • Water restrictions imposed
_	(F)	D3 - Extreme Drought • Major crop/pasture losses • Widespread water shortages or restrictions
		D4 - Exceptional Drought • Exceptional and widespread crop/pasture losses • Shortages of water creating water emergencies
_		ounties where each tribe is ounty-level data available)

5

Importance of Agriculture on SW Tribes

- Agriculture an important source of livelihood (Deol and Colby, 2018)
 - Share of jobs in agricultural and mining industry above U.S. average at 1.8%
 - Poverty levels among Native Americans above U.S. average at 11.8% (e.g. 39% on Navajo Nation and 47% on San Carlos Apache Res.)
- Agriculture also important to native culture and traditions
- 2017 Census of Agriculture (USDA NASS, 2019)
 - Navajo Nation: 16,000 farms, 16 million acres of land in farms (90% of all reservation land), \$88 million market value of agricultural products sold
 - **Tohono O'odham**: 159 farms, 2.6 million acres of land in farms (91% of all reservation land), \$8 million market value of agricultural products sold

Importance of Cattle and Hay Production

- Livestock production is a significant part of the economy for SW tribes and part of traditional culture (Redsteer et al., 2013)
 - E.g., livestock sales on Navajo Nation make up 21% of all agricultural sales, cattle and calves are second most important after sheep and lamb (USDA NASS, 2019)

	% of Total Agricultural Sales in State		% of State Production for Reservation Counties		
State	Cattle	Other Crops and Hay	Cattle Inventory	Hay & Alfalfa Acres	
Arizona	17%	10%	66%	56%	
Nevada	37%	34%	50%	30%	
New Mexico	24%	6%	15%	37%	
Utah	21%	15%	13%	16%	

7

Drought Impacts on Livestock Production

- Potential climate change impacts on production (Nania et al., 2014)
 - Reduction of forage availability and quality
 - Invasive species thriving on Navajo Nation
 - Reduced water availability for livestock
 - Negative effects on livestock health
- Economic impacts on the Hualapai Tribe (AZ) (Knutson et al., 2007)
 - \$1.6 million losses for livestock producers between 2001-2007
 - Herd reduced by 30% in 2001-2002, grazing reduced by 50% in 2004-2007

Tribal Challenges in Drought Management

- Redsteer et al., 2013
 - Water rights settlement and ability to exercise of rights
 - Insufficient resources and expertise to monitor drought and climatic conditions
 - Pollution of water resources occurring outside tribal area
 - Conflict management and collaboration with federal and local governments and other stakeholders

9

Research Questions

- 1. What is the impact of drought on agricultural sectors on southwest reservations?
 - Sectors selected for the study: cattle, hay
- 2. What is the overall economic impact of drought on southwest tribal economies?
 - Total impact due to drought affecting cattle and hay sectors directly
- Past studies examined total economic impacts of drought on agricultural sectors, but not in tribal economies specifically
 - E.g. Pérez and Hurlé, 2009; Bauman et al., 2013; Howitt et al., 2014

Data

- County-level data for reservation counties (N=34)
 - · Counties in Arizona, Nevada, New Mexico, Utah
 - · Reservation areas of each county only
- Period: 1981-2016 (T=36)
- Cattle inventory, including calves USDA NASS
- Hay yields, including alfalfa USDA NASS
- Palmer Drought Severity Index (PDSI) Cooperative Institute for Climate and Satellites, North Carolina
 - Compiled using temperature and precipitation data
 - Range from -10 (very dry conditions) to +10 (very wet conditions), typically -4 to +4

11

Summary Statistics

Variable	Definition (Measurement)	Obs.	Mean	St. dev.	Min	Max
Cattle	Cattle inventory, incl. calves (head)	1,194	44,464	55,099	100	410,000
ln Cattle	Natural log of cattle inventory	1,194	10.20	1.09	4.61	12.92
HayYield	Hay yields, incl. alfalfa (ton/acre)	972	4.44	1.58	0.90	10.00
ln HayYield	Natural log of hay yields	972	1.43	0.35	-0.11	2.30
PDSI	PDSI value	1,224	-0.34	2.61	-5.27	7.40
DryDur	Duration of dry conditions (count of consecutive years, if PDSI<-1.9)	1,224	0.57	1.03	0.00	6.00
WetDur	Duration of wet conditions (count of consecutive years, if PDSI>1.9)	1,224	0.43	1.03	0.00	6.00

Notes: PDSI between -1.9 and 1.9 is considered "near normal" condition, according to the National Weather Service, Climate Prediction Center.

Methodology

- Cattle dynamic panel data analysis:
- $\ln Cattle_{c,t} = \beta_0 + \gamma \ln Cattle_{c,t-1} + \delta_1 PDSI_{c,t} + \delta_2 Dry Dur_{c,t-1} + \delta_3 Wet Dur_{c,t-1} + \beta_1 Trend_t + v_c + \varepsilon_{c,t}$
- Hay panel data analysis (random effects):
- $\ln HayYield_{c,t} = \beta_0 + \delta_1 PDSI_{c,t} + \delta_2 DryDur_{c,t-1} + \delta_3 WetDur_{c,t-1} + \beta_1 Trend_t + v_c + \varepsilon_{c,t}$
- Total economic impacts: supply-driven social accounting matrix, IMPLAN data

13

Results: Panel Data Models

	$ln\ Cattle_t$		$ln Hay Yield_t$		
	Coefficient	St. Error	Coefficient	St. Error	
$ln Cattle_{t-1}$	0.721***	0.102	-	-	
$PDSI_t$	0.003*	0.002	0.004*	0.002	
$DryDur_{t-1}$	-0.019**	0.007	-0.006	0.007	
$WetDur_{t-1}$	-0.002	0.010	0.013**	0.005	
Constant	8.939**	3.705	2.016	1.387	
$Trend_t$	-0.003**	0.001	0.000	0.001	
Number of obs.	1155		950		
Wald $\chi^2(5)$	196.49***		19.93***		

Notes: ***,**,* denote significance at 1%, 5%, and 10% level, respectively.

One unit decrease in PDSI:

- cattle inventory -0.3%
- hay yield -0.4%

One year of drought in the past:

- cattle inventory -1.9%
- hay yield no impact

Lagged impact of drought on cattle inventory, not on hay yields.

These results used to calculate impacts of drought scenarios.

Results: Drought Scenarios

Model	Scenario Description	Total Impact at t
Cattle	2-year drought: normal at t -3, PDSI decrease at t -2 and stays the same at t -1, PDSI increase back up at t	-3.72%
Hay	Normal or dry at t-1, PDSI decrease by 2 units at t	-0.87%

These scenarios were used to calculate:

- 1. Decrease in output in a) cattle and b) hay sectors on each reservation
- 2. \$ value of losses in a) cattle production and b) hay production on each reservation => **direct impacts of drought** on a) cattle and b) hay sectors
- \$ value of total economic losses for each reservation => total economic impacts of drought, driven by direct impacts in a) cattle and b) hay sectors

15

Results: Drought Impacts

	Cattle Sector (Million \$)	Hay Sector (Million \$)		Cattle Sector (Million \$)	Hay Sector* (Million \$)	
	Uintah 8	& Ouray	Remaini	Remaining combined, Arizona (a)		
Direct impact	3.243	0.257	Direct impact	1.684	0.030	
Total impact	8.243	0.693	Total impact	3.478	0.078	
	Navajo	Nation	Remaini	Remaining combined, Nevada (b)		
Direct impact	3.502	0.111	Direct impact	0.264	0.005	
Total impact	8.212	0.387	Total impact	0.589	0.017	
	Tohono O'od	ham Nation	Remaining combined, New Mexico (c)			
Direct impact	1.805	0.089	Direct impact	0.691	0.010	
Total impact	7.408	0.490	Total impact	1.585	0.056	

⁽a) Hopi, San Carlos*, White Mountain*; (b) Duck Valley*, Goshute*, Pyramid Lake, Washoe Tribe*;

⁽c) Acoma*, Jicarilla Apache, Laguna Pueblo*, Mescalero Apache, Zuni

Summary

- Droughts negatively impact cattle inventory and hay yields immediately in the same year conditions become drier
- Also, there is lagged effect of drought for cattle inventory, but not for hay yields
 - Reduced breeding stock results in smaller cattle inventory in the following years
- Large economic impacts of drought for reservations
 - Direct losses larger in the cattle sector, resulting in larger total economic impacts compared to the hay sector

17

Conclusions

- Droughts represent a serious threat to the tribal economies
- Need to improve ability of tribal governments and producers to monitor, prepare for, and respond to droughts:
 - Resources and training to recognize onset of drought
 - · Develop and implement strategies for drought adaptation and mitigation
 - Water rights settlement and financial support to build infrastructure
 - Collaboration with researchers, policy makers, local/state governments

References

- Bauman, A., Goemans, C., Pritchett, J., and McFadden, D.T. 2013. Estimating the economic and social impacts from the drought in Southern Colorado. *Journal of Contemporary Water Research & Education* 151(1):61-69.
- Deol, S., & Colby, B. (2018). Tribal Economies: Water Settlements, Agriculture, and Gaming in the Western US. *Journal of Contemporary* Water Research & Education, 163(1), 45-63.
- Fisher, A. C., Hanemann, W. M., Roberts, M. J., & Schlenker, W. (2012). The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather: comment. *American Economic Review*, 102(7), 3749-60.

19

References

- Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., ... & Wolfe, D. (2011). Climate impacts on agriculture: implications for crop production. *Agronomy Journal*, 103(2), 351-370.
- Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J. R., & Sumner, D. (2014). Economic analysis of the 2014 drought for California agriculture. University of California, Davis, CA: Center for Watershed Sciences.
- Knutson, C. L., Hayes, M. J., & Svoboda, M. D. (2007). Case study of tribal drought planning: The Hualapai Tribe. *Natural Hazards Review*, 8(4), 125-131.

References

- Kuwayama, Y., Thompson, A., Bernknopf, R., Zaitchik, B., & Vail, P. (2019). Estimating the impact of drought on agriculture using the US Drought Monitor. *American Journal of Agricultural Economics*, 101(1), 193-210.
- Pérez, L. P., & Hurlé, J. B. (2009). Assessing the socio-economic impacts of drought in the Ebro River Basin. Spanish Journal of Agricultural Research, (2), 269-280.
- Redsteer, M. H., Bemis, K., Chief, K., Gautam, M., Middleton, B. R., Tsosie, R., & Ferguson, D. B. (2013). Unique challenges facing southwestern tribes. In *Assessment of Climate Change in the Southwest United States* (pp. 385-404). Island Press, Washington, DC.

21

References

• USDA NASS. (2019). 2017 census of agriculture, American Indian reservations.

https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/American Indian Reservations/AMINDIAN.pdf