Farmer/Rancher Response to Drought in the West

Kynda Curtis, Professor, Utah State University Tatiana Drugova, Postdoctoral Fellow, Utah State University Ruby Ward, Professor, Utah State University

Background: Drough	nt Im	pacts	s to
 D0 - Abnormally Dry Short-term dryness slowing planting, growth of crops Some lingering water deficits Pastures or crops not fully recovered 	31.3% of State	72.0% D0-D4	
D1 - Moderate Drought Some damage to crops, pastures Some water shortages developing Voluntary water-use restrictions requested	28.2% of State	40.7% D1-D4	
D2 - Severe Drought Crop or pasture loss likely Water shortages common Water restrictions imposed	12.5% of State	12.5% D2-D4	
 D3 - Extreme Drought Major crop/pasture losses Widespread water shortages or restrictions 	0.0% of State	0.0% D3-D4	
 D4 - Exceptional Drough Exceptional and widespread crop/pasture losses Shortages of water creating wate emergencies 		0.0% of State	

Background: Ag. Production Important to Economy

- Livestock production
 - Around 70% of Utah's agricultural income (USDA 2017 Ag. Census)
- Hay and onions
 - High water-use crops
 - Sales in Utah: \$176-260 mil./year for hay
 - Sales in Utah: \$6.6-\$7.4 mil. for onions (UDAF 2018 Annual Report)
- Vegetables and fruits
 - High value crops important source of income for growers
 - Sales in Utah: \$30 mil. for vegetables, \$26 mil. for fruits (USDA 2017 Ag. Census)

Methodology

- Choice experiment growers:
 - Asked whether they would adopt a strategy (Y=1) or not (Y=0) given % of crop harvested (varied at 40%, 60%, 80%)
 - Strategies evaluated individually, and they varied across grower groups
 - 2 options binomial logit model (estimated using Penalized MLE)
- Choice experiment livestock producers:
 - Asked which one of four strategies they would choose given % reduction of grazing efficiency
 - Strategies evaluated against each other
 - 4 options multinomial logit model (estimated using MLE)

Group	N – total	N – usable	Data collection method
Livestock producers	64	48	Producer meeting 2/2019, online spring 2019
Hay/forage growers	28	8	Grower meeting 2/2019
Onion growers	18	13	Grower meeting 2/2019
Vegetable growers	26	21	Online spring 2019

Other Potential Responses to Climate Change Impacts – Ag only

- Introduce drought resistant grasses to fallow and range areas for livestock feed
 - Alleviate erosion, low to no water needed other than rainfall, provide feed for cattle
- Expand tourism activities around agriculture and food (agritourism, food or cultural tourism)
 - Food and cultural tourism very popular
- Use technology to protect against temperature change, pests, etc.
 - Use of hoop houses (with shade), row covers, netting, etc.
 - Monitor soil moisture and deliver water as needed

Most Preferred S	Strategies
------------------	------------

Order	Livestock Producers	Hay Growers	Onion Growers	Vegetable Growers
#1	Purchase feed/lease additional grazing (50%)	More water efficient irrigation system (33%)	More water efficient irrigation system (50%)	Water saving technology (40%)
#2	Reduce the herd (38%)	Low water-use crop (33%)	Stretch out irrigation events (33%)	More water efficient irrigation system (25%); Sacrifice lower value crops (25%)
#3	Change livestock type (8%)	Water saving technology (17%)	Move out of farming (8%); Low water-use crop (8%)	Change to a drought resistant crop (10%)
#4	Transition out of livestock production (4%)	Move out of farming (17%)	Finish the crop early (0%)	Move out of farming (0%)
#5	Other (0%)	-	-	-

Sample Stats

Characteristic	Vegetable	growers	Onion gro	owers	Hay grov	vers	Livestock pro	ducers
Acres farmed	<=10	79% (19)	NA	47% (8)	NA	18% (4)	<50	24% (8)
(growers)/animals	11-25	8% (2)	<50	24% (4)	0-300	23% (5)	51-200	48% (16
managed (livestock	26-100	0% (0)	51-100	24% (4)	301-	18% (4)	201-400	21% (7)
producers)	>100	13% (3)	101-300	6% (1)	1000		401-700	0% (0)
					>1000	41% (9)	>700	6% (2)
Primary	Veggies	85% (22)	None	27% (4)	Hay	85% (17)	Calf/cattle	81% (43
crop/livestock type	Tree fruit	8% (2)	Corn	7% (1)	Cattle	5% (1)	Sheep/Lamb	8% (4)
(secondary crop	Other	8% (2)	Wheat	13% (2)	Other	10% (2)	Poultry/Eggs	2% (1)
for onion growers)			Veggies	47% (7)			Dairy/Milk	2% (1)
			Other	7% (1)			Other	8% (4)
Irrigation system	NA	0% (0)	NA	27% (4)	NA	10% (2)	-	-
used primarily	Flood	12% (3)	Flood	33% (5)	Flood	14% (3)		
(growers only)	Wheel	0% (0)	Furrow	7% (1)	Wheel	29% (6)		
	Pivot	4% (1)	Drip	27% (4)	Pivot	43% (9)		
	Drip	65% (17)	Other	7% (1)	Drip	5% (1)		
	Other	19% (5)		()	Other	0% (0)		

17

Sample Stats

Characteristic	Categories	Vegetable growers	Onion growers	Hay growers	Livestock producers
Specify what is a	100%	0% (0)	9% (1)	0% (0)	0% (0)
large % of crop	80-99%	0% (0)	9% (1)	11% (1)	4% (1)
loss/grazing	60-79%	13% (3)	27% (3)	44% (4)	25% (6)
efficiency	40-59%	46% (11)	36% (4)	11% (1)	38% (9)
reduction to you	20-39%	29% (7)	18% (2)	33% (3)	25% (6)
	<20%	13% (3)	0% (0)	0% (0)	8% (2)

- Vegetable growers appear most sensitive to crop loss
- Onion growers appear the least sensitive to crop loss

Strategy	(1) Adopt	a water-	(2) Switch to	o a drought-	(3) Sacrifice	lower value
	saving te	chnology	resistan	t variety	cro	ops
N of obs.	72	59	64	60	66	59
WTA	34.7%**	36.0%**	52.9%***	53.3%***	53.7%***	56.6%***
Wald χ^2	8.39***	7.29***	10.38***	10.49***	17.20***	16.71***

- Same conclusion regardless of the number of observations
- Water-saving technology– growers are willing to do so if they harvest at least 36% of crop
- The other two strategies are similarly preferred (minimum crop harvested 53-57%)

Strategy	Coefficient	Est.	S.E.	 Insignificant β –
Reduce the herd	Constant α	-0.82	0.50	grazing efficiency
	Grazing efficiency red. β	0.48	0.80	reduction does not
Change livestock type	Constant α	-3.94**	1.58	affect preferences
	Grazing efficiency red. β	3.25	2.29	
Transition out of	Constant α	-3.20**	1.48	 Significant and
livestock production	Grazing efficiency red. $\boldsymbol{\beta}$	1.16	2.25	negative α – strateg
Purchase feed/rent	Constant α	-	-	 are preferred less relative to the base
grazing area (base option)	Grazing efficiency red. $\boldsymbol{\beta}$	-	-	relative to the base
N of obs.		162		• WTA not reported (
Log-Likelihood		-162.59		highly insignificant)
Wald χ^2		2.62		

Resul	ts: Hay	ts: Hay/Forag		s: Hay/Forage Growers				
Strategy	(1) Switch	n to a low	(2) Adop	t a water-	(3) Switch	to a more		
	water-u	ise crop	saving te	chnology	efficient irrig	ation system		
N of obs.	27	22	26	23	32	24		
WTA	58.8%***	58.9%**	63.1%**	61.9%**	68.5%***	72.7%***		
Wald χ^2	7.50***	5.79**	4.57**	3.33*	6.86***	5.74**		

Notes: ***, **, and * denote significance at 1%, 5%, and 10% level, respectively. $WTA = -(\alpha_i/\beta_i) * 100\%$. Confidence intervals for WTA determined using Krinsky & Robb method with 10,000 replications.

- · Similar conclusion regardless of the number of observations
- Growers willing to switch to a more efficient irrigation system if they harvest at least 73% of crop
- Similar preferences for the other two strategies

Strategy	(1) Switch	n to a more	(2) Finish th	e crop early
51141687		gation system		
N of obs.	35	34	37	36
WTA	61.3%**	59.4%***	69.5%***	70.3%***
Wald χ^2	5.14**	6.09**	8.79***	8.07***

- Same conclusion regardless of the number of observations
 Onion growers prefer switching to a more efficient irrigation system
- Onion growers prefer switching to a more efficient irrigation system (at least 59% harvested crop needed) to finishing the crop early (70% harvested crop needed)

Results: Conditions for Exiting Farming or Ranching

- Livestock producers (N=25):
 - no or minimal grazing/pasture/forage (N=9);
 - no water/irrigation (N=4);
 - multi-year drought (N=3);
 - high feed cost (N=3);
 - would not sell herd under any circumstances (N=3)
- Onion growers (N=10):
 - not enough water/snow or dry spring (N=4);
 - no water/snow at all (N=2);
 - financial concerns (N=2)
- Vegetable growers (N=19):
 - no water at all (N=8); high water costs (N=6);
 - not enough water (N=4);
 - would not stop under any circumstances (N=3)

Round Table Discussion

Overall question

What types of policy, program assistance, information, tools, or formats, timing, etc. will improve your ability to adapt to drought and other climate change effects?

29

1. How have recent droughts affected your operation?

2. Were changes in agricultural practices necessary (temporary/permanent), if so what changes were made?

31

3. Is increased variability in water supplies a major concern (economically, socially, etc.) for agriculture in the future? 4. What is the outlook for this year?

33

5. What other climate effects have you noticed, such as changes in growing degree days, temperatures, etc.?

6. Are these climate change effects a major concern (economically, socially, etc.)?

35

7. Will permanent changes in agricultural practices need to be made, if so, what types of changes do you foresee?

8. What is your interest in the following? Alternative low-water use crops High-value food crops Irrigation and other water-saving technologies Hoop houses and other "protective" technologies Financial management/cost reduction strategies Marketing and/or market type assessment Agronomic strategies (seeding timing, zero/low tillage, stubble retention, integrated pest management, manure applications, cover crops, etc.)

37

9. What types of policy or governmental programs (subsidies, USDA programs, etc.) would be most helpful to you in managing climate change effects?

10. What types of information would be most helpful to you in managing climate change effects?

39

11. What methods of information delivery would work best?

- Workshops
- Videos
- Factsheets
- Farm demos/field days
- On-farm trials
- Other???

What final questions do you have regarding adopting drought management strategies?